-]
> IEEE

$2.50 Software Magazine™

Volume ll, No.5 October 2!

Special Feature!

This month Ward Christensen’s
8080 Programming Tutorial
continues with “must know” terminology.

LIFELINES

Editor-in-Chief: Edward H. Currie
Managing Editor: Jane V. Mellin
Production Assistant: K. Gartner

Administrative Assistant: Susan M. Sawyer

Volume Il No.5 October

CONTENTS PAGE
Opinion
Editorial Comments
Edward H. Currie 2
The Pipeline
by Carl Warren 3
Z0so)
AReplytoZoso 7.
KIB-BITZ 19
Features
8080 Programming Tutorial-Terminology
by Ward Christensen 8
Assembly Language Interface to PL/I-80™ Part 2
by Michael J. Karas 14
ABBS,CBBS™, FBBS, RBBS, ETC.
Maybe you'd like to start one too?
by Jim Mills 20
The Dentist’s Office: PAS-3™ and Univair™
by Tom Crites 22
Better Random Numbers
by Bill Burton 24
The CP/M® Users Group
CPMUG™ Volumes 53 and 54
Catalogues and Abstracts 27
Ordering from CPMUG 32
Products
A Note on SBASIC™ 13
ZSID™ Application Note 13
A Reporton CP/M 2.25A forthe TRS-80™ Model Il 32
New Products 33
New Versions 34
Some Hints on T/Maker | 35
Tips and Techniques 36
Bugs 37
Operating Systems 87
Hard Disk Modules 37
Version List 38
MMU Announced 37
Miscellaneous
Coming Soon 7
RENEW 16
Rumor Has It 16
Change of Address 36

Copyright © 1981, by Lifelines Publishing Corporation. No portion of this publication may be reproduced without the written permission of the publisher. Lifelines, Volume Il, Number
5. Published monthly by Lifelines Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028. Telephone: (212) 722-1700. The single copy price is $2.50 domestically, including

the U.S., Canada, and Mexico. The single issue price for copies sent to all other countries is $3.60. A one year's (12 issues) subscription is priced at $18.00, when destined forthe U.S.,
Canada or Mexico, $40 when destined for any other country. All checks should be made payable to Lifelines Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on
a U.S. bank; checks, money orders, VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all correspondence to the Publisher at the above address.
$os&mﬁs¢er. please send change of address to Lifelines Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028. Application to mail at second class postage pending at New
ork, N.

CBBS is a trademark of Ward Christensen and Randy Suess. The CP/M Users Group is not affiliated with Digital Research, Inc.

SBASIC is a trademark of Topaz Programming. PAS-3is a trademark of Artificial Intelligence.
SB-80 is a trademark of Lifeboat Associates. T/MAKER Il is a trademark of Peter Roizen.
TRS-80 s a trademark of Tandy Corporation. Univair is a trademark of Univair International.

280 is a trademark of Zilog Corporation. CBASIC is a trademark of Compiler Systems.
CP/M is a registered trademark of Digital Research, Inc. ZSID is a trademark of Digital Research, Inc. =~ WordStar and DataStar are trademarks of MicroPro International Corp.
Program names are generally trademarked by their authors.

Editorial CommentsITTTTTTTTTTTTTI

The Quiet Revolution

The microcomputer age has been
in a state of continual evolution
since its beginning in 1975 with the
introduction of the Altair.

Though not many realize it,
almost every aspect of the
microcomputer industry had its
beginning with the early Altair
development in Albuquerque,
New Mexico: the first computer in
kit form, the first microcomputer
high level languages, the first
microcomputer convention, the
first microcomputer publication,
the first software publisher for
micros, the first computer within
the reach of all levels of society,
etc.

The Altair Age began quietly,
without anyone really suspecting
that it would spawn several hun-
dred new companies, nearly a
hundred publications, a dealer
network of some two thousand
dealers, and an installed base of
literally hundreds of thousands of
microcomputers throughout the
world, an unending demand for
floppy disk drives and employ-
ment for millions.

How would one have guessed that
this microcomputer would be
capable of compiling virtually
every language available for com-
puters of any type, playing games,
music composition and produc-
tion, splendid graphics, teaching
its owner a wide variety of skills,
linking up with other micros
around the world via the ordinary
telephone line, speech recognition
and speaking itself, and a myriad
of other activities? And it all
began when one man decided that
he wanted to provide a “real com-
puter” to the masses.

2 Lifelines, October, 1981

How could anyone have ever
dreamed that entrepreneurial
companies like Microsoft,
Lifeboat and others could end up
with well worn paths to their
doors beaten by the major
manufacturers, who were
somehow unable to come to grips
with the software required for
these machines?

All that came after was largely
recastings of that which went
before. Consider for example
languages such as BASIC.
Microsoft BASIC is the BASIC of
the entire industry, and whether
you're running BASIC on the Ap-
ple or Radio Shack machines (or
for that matter on most any other
machine: 8080, 8085, Z80, 6502,
etc.), if you look closely enough
you will find to your amazement
that they are all derivatives of the
early Altair BASIC which was
written by Microsoft.

And each time that this revolution
has appeared to stabilize another
new development has sent it hurtl-
ing forward again; whether it’s the
introduction of the Z80 or the
8086 or the 68000, or the advent of
the mini-Winchester, the momen-
tum is continuing to build.

And just as we begin to suspect
that there is a clear view of the
future at hand, perhaps the most
significant event of the decade oc-
curs.

IBM enters the market with the
IBM personal computer. This
machine, with its powerful 8088
and enough RAM storage to con-
tain an entire floppy, clearly
marks the beginning of a new era.

Its introduction has been largely
without fanfare and has gained lit-

tle real attention by the press, who
are content to describe IBM's
hardware and assume that the
there will be a big “fallout” of
small manufacturers. (Incidental-
ly, these same self-styled gurus
have been incorrectly predicting
this “fallout” for the last five
years).

The fact that IBM has chosen to
standardize on an operating
system provided by Microsoft has
also gone almost totally unnotic-
ed. It seems incredible that while
the industry has drifted into
widespread usage of a de facto
standard operating system (due
mainly to the large number of for-
mats introduced by Lifeboat
Associates), suddenly a new star
appears on the horizon and is pro-
vided by the same company which
gave many of most significant
languages available for microcom-
puters.

Microsoft is hard at work creating
what undoubtedly will prove to
be the most powerful operating
system in widespread use in the
near future. This will do much to
stimulate production of large
numbers of 8088/8086 applica-
tions for both office and home, as
the several hundred small com-
panies which make up this in-
dustry rush to follow IBM’s lead.

So watch carefully the
developments of the next eighteen
months and you will have a uni-
que opportunity to observe what
may well be the most exciting
chapter of all in what began as
“The Age of Altair”.

Edward H. Currie

The Pipeline [TTTTTTTITITTTTTTITI

About software development

If you've been agonizing over a soft-
ware project of your own, or trying to
find out why a purchased package ap-
pears not to work as advertized, here
are some things that will most likely
save you time, money, headaches,
and make you a hero all at the same
time.

When designing a program, you
might do well to take the time to really
think it all the way through before
beginning the coding process. This is
what oldtime application designers
do.

The process involves taking a
notebook—an engineering notebook
with E4 grids is best—and developing
first a rough outline of what you plan
to do. Then take each part of the
outline and expand it to the
subfeatures. What you end up with is
a basic specification. Your next chore
is to further define the specification as
to what the inputs and outputs are to
look like, what error and help
messages are to say, and what causes
each to happen.

Once you've developed this, you can
move on to developing the logic. And
yes, flowcharts do help regardless of
what anyone says. There are several
steps in developing logic for an ap-
plication program and these include:

[J Break down each functional part
of the application. Take the install
portion, for example, define the
logical flow of the operation in words
and direction.

L] Develop a logic flow chart of the
operation. Indicate the start, middle
and end, and branches to the
subroutines that will be used.

[J Tie in the logical physical device
operations; printer, disk, terminal
and so forth.

When you've developed the logic for
each of the subpart of the program,
develop a box diagram of flow of the
entire program showing how each
subpart fits together.

Should you be using a terminal that
offers screen handling functions, in-
clude tables of the control and escape
sequences that will be required and
where and how they fit into the pro-
gram.

Once you've completed all the above,
you're still not ready to code. What
you must do now is determine how to
use the program; that is, develop a
user’s guide based on your design
criteria. Remember though that this
isn't etched in iron and will probably
change when you finally get to a fully
debugged and operational program;
but it does give you a target to shoot
at.

Now you can begin coding the ap-
plication. The interesting thing to
note here is that coding will only take
a fraction of the time it would if you
took a head on approach. All that is
required is to follow your logic flow
and watch the code appear.

When the program is coded there is
still more work to do. This involves
testing to see if it works for all cases as
designed.

To fully test your program (and in-
cidentally, those that you buy)
develop a test script. The script should
be developed from your specification,
or in the case of a bought package, the
operator’s manual. Each input and ex-
pected output is listed, and room
made for what actually occurs. You
even put in those inputs that will
cause an error to see if the error traps
work correctly.

The next step in writing the test script
is to develop inputs that shouldn't
work, or those that should only work
with the operating system at com-
mand level. You may get some sur-
prising results.

With your test script in hand begin
testing as you written, don't deviate
from the script or you won't be able to
find and fix the problem. Perform the
test at least three times to make sure
you haven't missed anything. Then go
back and try those inputs that caused

by Carl Warren

a problem, noting exactly how the
problem occurred and whether or not
it was random.

Now you have a well thought out
document that allows you to quickly
go back to the code and make
changes. Be aware, however, once the
changes are made testing must be
redone so you can ensure that a fix
didn’t cause another problem
elsewhere.

It would seem that after you go to all
this trouble, you wouldn’t need to
worry about bugs creeping into the
program. But try as you will you
won't find all the bugs crawling
around, but somebody who buys
your package will. Consequently, you
will need to keep a functional problem
log (FPL).

The purpose of the FPL is to keep
track of reported problems, could
they be repeated, the system con-
figuration, and what was done to fix
them and when. The FPL will not only
add to the viability of the program,
but serve as an aide to future updates,
or to new packages that use routines
all ready being employed.

It’s interesting to note that apparently
very few software houses employ
these techniques, nor do software
reviewers. And you as a software
buyer can end up suffering.

What you might want to do is to
develop a test notebook for packages
you buy with a test script, and FPL.
When you're unhappy with a package
you can point to real evidence. Note
though that hardware problems can
contribute to a problem as well, and
should be kept track of in the FPL.

A typical test script looks something
like this:

INPUT EXPECTED

OUTPUT

ACTUAL COMMENTS
OUTPUT

Notice, that you have an expected
output and an actual output. What
you will want to note is whether or
not the output is where it's supposed
to be on the screen or printer, the

=
Lifelines, October, 1981 3

comment line notes the FPL document
the problem was fixed on.

The FPL is similar but includes room
for notations of what the detailed pro-
blem was, what caused the problem,
when and how it was fixed.

A very easy way to set up this
documentation is to employ Word-
Star, or ideally, dBase II. This way
you can use your computer to handle
some of the mundane tasks required
for good application design.

Of course all programs aren't applica-
tions but deal with system software,
like an O/S for example. The same
techniques can be employed to ensure
a good design.

This approach to software design isn't
new, but has been employed for a
number of years by major software
developers for mainframes and
minicomputers.

The problem that seems so rampant in
the microcomputer industry is that
too little time is spent on the initial
program design. This as a conse-
quence, is the basic reason for those
$25 updates and lack of functional
characteristics that ZOSO likes to talk
about so much.

Along the same lines as basic software
development is Computer Aided In-
struction program design. Similar
techniques are employed in creating a
viable teaching package, but other
things must be taken into account.
Among these are: Who is going to
learn from it, what is it really going to
teach, and did it teach it.

The first two criteria are the easiest
find out and develop using outlining
techniques and surveying the perspec-
tive audience. The latter is the most
difficult, since it means doing some
kind of testing to make sure you wrote
the package correctly.

To understand interpreting the func-
tionality of a C.A.L lesson, you must
first understand C.A.I. Unfortunate-
ly, many who are developing com-
puter oriented training programs are
unaware of how a lesson goes
together. A C.A.l. program is very
much like the FORTH language in
concept-it relies on threads to provide
continuity.

4 Lifelines, October, 1981

C.A.l. programs are made up of end
lessons, which are in turn made up of
frames. These frames are linked
together by ‘threads’, or roadways,
that are taken dependent on the
answer given, or the path chosen by
the designer. Multiple threads leading
ultimately to the same place must be
built-in to ensure that the maximum
amount of information is conveyed to
the student.

When developing a C.A.l. program,
decisions must be made about the con-
tents of any given lesson in the pro-
gram, as to length, type of informa-
tion, and degree of difficulty;
moreover, what each frame will con-
tain, and how they will be threaded
together.

The best method of creating a C.A.L
program is to employ a story board,
One story board per lesson. You can
do this with a large chalkboard. Draw
the number of boxes (frames) that you
think you will use—you should know
almost exactly if you did the specifica-
tion correctly, then put in a one or two
sentence abstract of the information
the frame will convey. Next number
each frame as to logical sequence, then
connect them together by sequence
dependent on answers given.

Once you have done this you can
bring in someone unfamiliar with the
project to see if you're following an
understandable path. Now go back
and using screen layout sheets develop
detailed displays of what each frame
will look like. You'll want to Xerox
these because your next task is to put
them together in the various orders,
based on the decided upon threads,
that each frame can be displayed.

Now begin the coding process. The
best method involves coding text
material with an editor or a graphics
package and saving each frame as an
overlay or callable file. If the program
is short enough code them as
subroutines. You might want to look
at using Pascal as the language, since it
offers some facilities that make it
almost ideal for C.A.l., or you could
use assembly and create a small main
line program that treats everything as
overlays. What you want to try and
avoid is hardcoding the frames since
you will more than likely want to
change them as time goes by.

Oh yes, be sure to keep good logs on
how well the program is working.
Who knows, you might end up with a
product Lifeboat will want to carry.

Advertisement

LOOK

at what

Lifeboat
Associates

K sells now:

Benchmark
Benchmark Mail List

Cornwall
Apartment Management

PLANS8O
PRISM
Stiff Upper LISP

: Univair Series 9000:

Family Dental Management :
Family Medical Management :
Insurance Agency Management :

VISAM
Wiremaster
ZAP80

call or write to:
Lifeboat Associates

1651 Third Avenue
New York, New York 10028

Tel: (212)860-0300
E Telex: 640693(LBSOFT NYK) E
TWX: 710-5812524(LBSOFT NYK)
s S S TR L T

p

Copyright © 1981, by Lifeboat Associates.

ZOSOHTTI

While 1 was away on holiday last
month, some really great topics came
to mind. Instead, let's discuss these:
‘CRT Terminals - The Missing Keys’,
‘Floppy Disks - The Good the Bad and
the Ugly’, ‘Word Processing - A Tool
for the Famous?’, ‘Couples Apart - Is
the 8080 to Blame?’, ‘More Powerful
Processing - Some Modest Proposals’,
‘Zoso T Shirts - Wear With Pride’,
‘Lapel Buttons - I Can Use the Publici-
ty’, and finally, a contest. If you think
I'm kidding, think again!

Como estan Vds?

The courtesy and sincerity of this
Spanish greeting can not quite
obscure its illiteracy. By way of lame
excuse, I think it’s the fault of [most]
terminal manufacturers who just
don't find it worth their effort to in-
clude those inverted question marks
which ‘flag’ the beginning of a proper-
ly formed Spanish question. Also not
to be found are the tilde (which should
appear over the ‘n’ in espanol), the
cedilla (required by the ¢’ in your
typical French garcon and a variety of
other words in French, Rumanian,
Portuguese and Turkish). While I'm
on the subject, they've also omitted
accented vowels, the ever popular
German umlauts, ‘and the slashed ‘o’
without which Scandinavian
languages lose a lot (correctness for
example). What our overpriced
cataract boxes offer instead is numeric
keypads (often as costly options), to
duplicate keys which are already
there. I guess the guys who design
these things must think we're all ac-
countants or keypunchers (in the most
menial sense). On the plus side of the
ledger, for a goodly sum one can ac-
quire an APL terminal to com-
municate to a more select audience.
("... plus side of the ledger...", did I
really say that? Hmm... maybe
they're right).

Do you remember ‘R’ (the local repair-
man with the imposing collection of
broken SuperTerms)? Every couple of
years, he runs exhaustive tests on
brand name 8"disks. His most recent
tests were conducted this Spring.

Notice that I said ‘brand name disks'.
‘R’ has a drawer full of drive heads
which have been abraded into

premature oblivion by bargain
specials. One of those heads was
mine. I guess it’s just another example
of how outrageously expensive mini-
educations can be these days.

The disks which R’ tested most
recently were BASF, Wabash, Ver-
batim, 3M, Dysan, Maxell and
Memorex (all single-side, single-
density). His tests involve reformat-
ting several samples of each brand for
extended density. This blows a few
ducks out of the water, as they say.
For the better disks, his computers
keep track of errors which accrue dur-
ing roughly 12 hours of demanding
seek-read-write cycles.

Two brands distinguished themselves
by performing flawlessly. These two
were further tested by a specially
‘gimicked’ drive in which the head
amplitude had been deliberately
reduced out of ‘spec’. Only one sur-
vivor remained. May [have the
envelope please...

The Winner: Maxell

The Runner-up: Dysan

Also rans: All the others

I have every confidence in the integri-
ty and objectivity of the test methods
which ‘R" uses, and, as far as it goes, 1
concur with his resulting conclusions,
still he and I do not look for the same
things. His tests help him decide
which single brand of floppy disk to
use and sell (Maxell, since I've known
him), and I mainly look for brands
not to buy. 'R’ and I differ in another
major way; he disdains the use of a
hole punch to make 'flippy disks’; I do
not. Here’s what I think of the brands
he tested:

I agree that Maxell disks are the best I
have had no bad samples to date. The
side they want you to use seems to be
99.99999% reliable at 600k, even
when certified only for single density.
The reverse sides seem just as good.
My one trivial gripe concerns the
labels they provide; the colors are
bilious, and once a Maxell label is ap-
plied, nothing short of a heavy duty
belt sander stands the slightest chance
of removing it. More than one [Max-
ell] insider has told me that all of their
8" disks are subjected to the same
rigorous testing. What this means is
that any premium you might wish to
pay for extra density certification or
for factory punched two-siders is
money that might best be spent

elsewhere. More or less the same
remarks apply to Dysan.

It seems to me that Wabash is con-
tinually experimenting with quality
and packaging. Amongst the SD/SS
eight inchers they have sold in the last
few years, I have seen everything
from attractive and reliable disks in
beautiful cardboard library cases to
unmarked horrors in plain white
sleeves. Amongst the Wabash disks
which I might otherwise have rated
‘best-buys’, | have found far too many
samples which emit very strident,
high-pitched squeals as they spin in
their jackets. This sound reminds me
of the nerve-jarring collisions between
chalk and blackboard which used to
interrupt my naps in the classroom.

BASF now produces a distinctly
average disk, and compared to some
of their earlier products, this
represents a major improvement.
Once they get the disks right, they
should work on the packaging; flimsy
boxes with poorly scored labels in any
color you want, just as long as you
want battleship gray.

Memorex has invested in many a TV
ad to convey the notion that their
audio cassette tapes were capable of
shattering glass. Despite this, all I saw
were ho-hum tapes in original but
nonetheless wretched cassette boxes.
Now they sell disks and little has
changed. The Memorex tradition of
user-hostile packaging continues
unabated. The culprit this time is their
idea of protective disk sleeves;
singularly bad! I'd like to move on,
but I'd be remissif I failed to mention
that like Wabash, Memorex has fre-
quently provided me with some bonus
sound effects; very rarely it's near
silence; more often it's what sounds
like an electric floor scrubber, and on
occasion what sounds like an extreme-
ly unbalanced tire hopping down the
freeway.

Verbatim disks have purportedly
undergone top to bottom overhaul
and redesign in recent months. Accor-
ding to Verbatim's ads, this has
resulted in a substantially better pro-
duct. I'm inclined to believe this
because they really had no other way
to go. I've had too much bad luck with
Verbatim disks to seriously consider
trying a box of the latest 1981 models.
I do however remember this much

=
Lifelines, October, 1981

5

about the ones I didn’t used to like; no
competing brand ever took a back
seat to Verbatim when it came to hard
errors and unwanted sound effects,
but it’s all a fading memory. As of
now, I'd hazard a guess that Verbatim
is mired in an image identity problem.
Their ads imply that the new ‘Datalife’
disks are the best money can buy, yet
they are widely available for only
pennies more than unbranded
specials. Pay a lot, pay a little... Not
me, pal.

3M disk labels have a very profes-
sional look. They are my favorites. So
much for the good news. In each box
of disks you are virtually assured of
getting a few which sound like a drill
smoking its way through one of your
wisdom teeth. The liner material
could probably stop a copper jacketed
30-06 slug fired from just inches away.
Some would call this quality; all 1
know is that punching holes for the
flip side is nigh unto impossible.
Besides, I'm inclined to question 3M’s
quality control because I once bought
a box of ten, five of which had no in-
dexing holes punched in the jacket. In-
itially, I was going to send those
useless disks back to Minnesota along
with a nasty letter, but I figured they'd
just replace them, so I opted to save
my time and my stamp as well.

An interesting little article about word
processing appeared in TIME
magazine (August 10, 1981 issue); and
I do mean little; the cover story that
week was about ice cream. Anyhow,
they reported that ex-President Carter
is in love with his word processor
(especially when brownouts don't
wipe out a days worth of his
memoirs), and that novelist John Up-
dike can’t be bothered to learn how to
use one. Draw your own conclusions!

A few weeks ago, while in a
Rastafarian haze, it suddenly dawned
on me that computers can do some
subliminal numbers on our heads.
Check this out (8080 mnemonics):

BEGIN:

CALL MOM
CAIL DAD
CAIL POP
; JMP INLAKE
MOM: RET
BAR: 1 RET
RET

POP:

’

6 Lifelines, October, 1981

e ———— e e —————————

INLAKE: HLT
END

This program will not work, and what
that implies is shocking. If you are the
kind of son or daughter who wants to
stay in touch with your parents (who
have split), you are partly out of luck
as far as the people at Intel are con-
cerned. It's OK to give Mom a ring,
but Dad (or Pop if you prefer) will just
have to sit by his lonely telephone
waiting for the call that can never be
made. In the face of this sort of in-
justice, it's little wonder that his
drinking problem has gotten out of
hand.

The big problem with machine in-
structions (regardless of how advanc-
ed the processor) is that none of them
do very much. Just as an example,
consider these familiar codes:

PCHL
MOV M, A
RNZ

XRA A

etc.

Big deal! If computers are becoming
so powerful, why can’t simple instruc-
tions get them to do some real work.
For example:

CIA ;Compute Interest (on)
Account

FBI ;Find Best Investment

DM D,L ;Do My Dishes & Laundry

CECC ;Cancel Credit Card
Charges
:note: external Modem re-
quired.

CRA "%’ ;Compute Ratios As:
;Percentages

FDS ;Find Date (for) Saturday

"PF BS ;Try For:
;--» Brooke Shields

SHAM ;Slip Her A ‘Mickey’

FTA ;:Finish This Article

These hypothetical mnemonics are
just quickie examples which perhaps
should have been chosen more
carefully. 1 get this nagging feeling
that I've some of them in other con-
texts. Nonetheless, this is the section
to reread if you plan to enter the con-
test.

Next on the agenda is the T shirts.
These are original designer items
(designed by me), available in beige,
white and gray. The name of yours
truly is boldly silk-screened where
you might otherwise expect to find an

alligator. You can win one of these
priceless keepsakes by submitting
useful material* to Lifelines, sending
me letters or ideas which I find wor-
thwhile for whatever capricious
reasons, or by distinguishing yourself
in the contests which we’ll be having
from time to time. I'm told that the
shirts will also be given as a bonus
present for those who give a Lifelines
subscription to a friend during the
coming holiday season. There are also
lapel buttons to honor lesser
achievements. I travel quite a bit and
I'm planning some nice surprises for
anyone I meet who is wearing either
an official shirt or lapel button. So
even if you live in what used to be a
two bit whistle stop before the
railroad spur was abandoned, don't
count yourself out!

Finally, we come to the contest. The
best five entries will win a shirt and
five assorted lapel buttons. A pair of
lapel buttons will be awarded to the
ten runners up. In this particular con-
test 1 am looking for whimsical
mnemonics to be used by a mythical
machine. A good example of the genre
can be found a few paragraphs back.

Official Contest Rules: Enter as often
as you like. There is no restriction to
the number of entries which may be
submitted in a single envelope. Don't
you wish other contests were as le-
nient? Address entries c/o me, Zoso,
to: Lifelines, 1651 Third Avenue, New
York, NY 10028. Be sure to include
shirt size and color preference just in
case you win. Entries will be judged
mainly on originality and wit, but it
can't hurt if you use every trick in
your arsenal to influence the judges
favorably. All entries must be
postmarked before December 1st,
1981. I should probably add the stan-
dard “Void where prohibited by law”
nonsense, but I don't think I will.

Good Luck,

Z0so

*Letters, comments, jokes, and other
useful tidbits are welcome and will be

rewarded with a Zoso shirt and/or
lapel button.-Ed.

[t

A REPLY[TT
TO ZOSOIl

4 August 1981
Gentlemen (and Dr. Zoso),

In regard to your ‘review’ of the pro-
gram Disk Doctor (Lifelines Volume 2
Number 3 August 1981), I would like
to set the record straight. I am the
original author of this program and
wish to say that while no program is
ever perfect, | am proud enough ot
this one to sign my real name to it.
Perhaps some day you will feel that
way about your column.

While you complained about (and ex-
agerated[sic]) the humor contained in
some of the prompting menus of Disk
Doctor, you made ample use of the
medical allegory to cover your lack ot
legitimate complaints about the pro-
duct. Since I believe Disk Doctor to be
the only comprehensive, CP/M com-
patible, disk recovery program for the
nontechnical user, 1 think you have
done your readers a disservice.

The only legitimate complaint that 1
could decipher was that Disk Doctor
would not install properly on systems
that contained different density
system and data tracks. This has been
corrected and you would have receiv-
ed notification that you could
receive this corrected version free if
you had completed your registration
card. :

As to your complaint about having to
run the installation program before
using Disk Doctor, this program is
one of the strong features of the pro-
duct. The semi-automatic install pro-
gram (written at SuperSoft) adjusts
Disk Doctor to the skewing pattern
and sector organization of your
equipment. It need only be installed
once for each system, and not each
time the program is run (in the event
that this was your problem). Addi-
tionally, Disk Doctor is shipped in-
stalled on the format ordered, and the
install program is provided to allow
installation on other systems that the
user may have.

You stated that Disk Doctor is ‘scan-
dalously overpriced” at $100. Since
there is no other CP/M disk recovery
program with Disk Doctor’s combina-
tion of automatic features (to my
knowledge), price comparison is not

easy. One of the four functions ot
Disk Doctor is the ability to display
recoverable erased files and ‘unerase’
them. Two other products are being
marketed that provide only this func-
tion and cost $36.50 and $60.00. The
less expensive of these two products is
only available for two disk formats.

Another function of Disk Doctor is
the ‘reclaimation’[sic] of the disk
when bad sectors arise. There is a
single function product that offers
this capability except that unlike Disk
Doctor it will destroy any files on the
disk, and it can only be used on
CP/M version 2.2 (Disk Doctor
works on both 1.4 and- 2.2). This
other product is priced at $80. Put
together, these programs provide less
than half of the capability of Disk
Doctor.

The wide variations of primitive disk
functions found in various CP/M
systems makes a product like Disk
Doctor more expensive to market
than one that works on the uniform
system calls of CP/M. In any event I
make no apology for the price, and
yours is the only complaint I have
heard.

As for your doubt of the claim that
Disk Doctor typically recovers 87 %
of all disks with directory failures, the
number is easily derived. Most
systems contain the directory in a
single ‘group’. This group typically
consists of 8 (or more) physical sec-
tors. If any sector will not read CP/M
will perform no operation on the
disk. Since wear is uniform on this
track, failures are randomly
distributed. Thus, at least 7/8 ths of
the entries can be recovered, and 7/8
ths is 87.5%. The .5% was discarded
to allow for a few very large multiple
extent files that might contain entries
in two sectors of the directory.

Your reference to the dangerous
vivisection’ done by Disk Doctor is
substantially incorrect. Each function
of Disk Doctor is carefully planned to
avoid leaving the damaged disk
worse than it was. During recovery
operations of a type that indicates the
disk may not be writing correctly, no
write operations are performed on the
damaged disk.

Finally, in regard to your apparent
obsession over SuperSoft’s spelling of
‘Diskettes/Discettes’ perhaps you

should consult Webster’s Dictionary;
both roots are acceptable. Memorex
sells ‘Discs’ and Radio Shack sells
‘Disks’, but both fit nicely in my
drive!

While I welcome honest criticism of
any product with which [sic] am
associated, I do not appreciate
reckless defamation. I have been very
gratified by the customer response to
this product, and it is also gratifying
to know that as I write this, someone
may very well be recovering weeks ot
hard work through the use of Disk
Doctor.

Sincerely,

John M. Holland

Editor’s Note: When Lifelines went to
press, Zoso was away and could not
be reached for comment on Mr.
Holland'’s letter.

Coming Soon

In coming months we'll be hearing
more on 8080 programming from
Ward Christensen.

A review series on sorts is also in the
works, along with an exhaustive
Pascal review. And of course, our
data base management series will
continue to investigate the many pro-
ducts of this nature available.

Do you have ideas on what should be
reviewed, or would you like to
evaluate software for Lifelines? Send
your suggestions in. If you'd like to
write for us, send us an account of
your software experience and note
your areas of expertise.

I171777777771

117717777777
1717777177777
117717777777

Lifelines, October, 1981

7

——

Stands for Blnary digiT, the smallest
piece of information which a com-
puter can deal with. It is usually
represented as a number which can
take on the value 0 or 1. It may be
loosely compared with a switch,
which is either open or closed. The
programmer usually deals with collec-
tions of 8 BITS, called a BYTE (See
BYTE). -

Bits are numbered from right to left,
thus the rightmost bit is numbered 0.

BOARD

Means a “circuit board”, usually a
printed circuit. (Thus the common ab-
breviation P.S. Board).

Some computers occupy a single
board. Others, such as the APPLE or
S-100 systems, consist of multiple
boards.

One board may be a SERIAL PORT,
another a RAM MEMORY board,
another the CPU board, etc.

BREAKPOINT

When DEBUGGING a program, you
often want to execute portions of it at
full speed, rather than step-by-step.
This may be because that part is
known to be OK, or because it con-
tains time-dependent routines, such as
might be used to access a FLOPPY
DISK.

A BREAKPOINT is a facility in which
execution of the program will tem-
porarily stop when a certain instruc-
tion is executed.

In the 8080, and CP/M in particular, a
value of “FF hex” is used to temporari-
ly replace the instruction.

When this instruction is executed,
control transfers to address 38 Hex of
the 8080; there control transfers to a
routine which puts back the original

instruction, and informs you that a
BREAKPOINT has been reached.

8 Lifelines, October, 1981

8080 Programming Tutorial - Terminology

JISSSSSSSSS IS SIS SIS IS TS SIS IS S SIS SIS IS S

BUFFER

An area of MEMORY which contains
related data, such as that input from a
keyboard, or to be printed (which
would be referred to as ‘input buffer’
and ‘output buffer’ respectively).

BYTE

A collection of 8 BITs. A BYTE can
contain one of the following:
* An unsigned number from O to
255
* A signed number from -128 to
127
* A single character (such as the let-
ter ‘A’)

You may also consider a BYTE to be 2
HEX digits, 3 OCTAL digits, etc. For
example, the ASCII character ‘A’
may be represented as:

‘A’ (character) or 01000001 (binary)
or 101 (octal)

or 64 (decimal)

or 41 (hex)

In the CP/M 8080 assemblers ASM
and the macro assembler MAC, these
are represented, respectively:

R

01000001B

101Q

64

41H

A series of BYTEs next to each other
may contain a message (END OF
PROGRAM’) or may contain
numbers larger than can be contained
in 1 BYTE. See also INSTRUC-
TIONS.

BUG

A BUG is simply a programming pro-
blem, which must be solved either by
looking at the source program, or, by
using some tool to assist stepping
through the program while it is ex-
ecuting.

See also DEBUGGING.

by Ward Christensen

Refers to the electrical and mechanical
layout of the connectors in a com-
puter, into which circuit BOARDs are
plugged.

The products of a particular manufac-
turer typically all conform to that
manufacturer’s bus. Other manufac-
turers can then make boards which
are compatible with this bus.

INTEL, Motorola, and DEC, are
typical manufacturers whose
microcomputer lines have a particular
BUS.

Computer hobbyists most frequently
come in contact with the “S-100” bus
(See S-100).

CARRY

Technically, CARRY is one of the
BITS in the PSW of an 8080 or other
MiCroprocessor.

As such, it “holds” a bit which is plac-
ed there by some instructions. For ex-
ample, SHIFTing a register usually
places one of the bits shifted, into
CARRY.

Also, when doing certain arithmetic
instructions, CARRY is used to in-
dicate something about the result: On
an unsigned add, CARRY indicates
the result was too large to be held in
the REGISTER.

In an unsigned compare, carry in-
dicates the difference. I use a memory
aid “CAL” meaning “Carry if Ac-
cumulator Lower”.

CHIP

A small “morsel” of chocolate, which
enhances the flavor of certain other-
wise “less interesting” cookies.

Also a common term for a
“packaged”, or “integrated” electronic
circuit. It may refer, for example, to a
MEMORY device, or to an electronic
electronic circuit such as the 8080
MICROPROCESSOR itself. The 8080
‘CHIP’ has the REGISTERSs on it, and
the control logic to cause PROGRAM

execution. To have a MICROCOM-
PUTER system, memory, input and
output devices, and a power supply
are required in addition to the
“Microprocessor CHIP”.

CLOCK

A MICROCOMPUTER has a
CLOCK to determine at what speed
the electrical signals occur. It may be 1
MHz, 2 MHz, 3 MHz, or may be some
“odd” number--I have seen a system
running at 1.7777 MHz. (See MHz)

CLOCK may also refer to the speed of
SERIAL data transfer from a TER-
MINAL.

CLOCK CYCLE

A CLOCK CYCLE is the shortest in-
terval in which the microprocessor
does something. Several CLOCK
CYCLES are required to perform the
most simple instruction. Many are re-
quired for more complex instructions.

CLOSE

When you have created a FILE on a
FLOPPY DISK, CLOSE writes infor-
mation back to the DIRECTORY so
that you will be able to find the file for
later use.

CMOS

(Not really 8080, assembler, or CP/M
related, you may wish to skip this
term. However, it is of common in-
terest, and being found more fre-
quently.)

A “family” of INTEGRATED CIR-
CUITS which is known for its low
power consumption. Only a few
microprocessors use CMOS for their
circuitry, such as the RCA COSMAC
series. They are ideal for battery
powered operation due to their low
power.

One other characteristic of CMOS
devices, is that their power consump-
tion goes up as their CLOCK speed
goes up. Thus CMOS may run slow-
ly, consuming little power, or faster,
consuming more power.

CMOS stands for “Complementary
Metal Oxide Semiconductor”. CMOS
low power results from the ‘oxide”,
which is an insulating layer exists bet-
ween the input signal and the part of

the circuit being controlled. Thus,
very little power flows--the effect is
capacitive, not a direct connection.

COMMENTS

To be most readable, an assembler
program should contain comments
stating what the function of the
various instructions is.

One caution to the beginning
assembler programmer: As you ex-
perience the joys of learning what the
instructions do, it is tempting to place
comments in the program explaining
what, 8080-wise, the instruction does,

_instead of explaining how the instruc-

tion relates to the program. For exam-
ple,

MVI “B,7 ;SETBTO 7
is a bad comment. Unless specifically
designed to do so, a program should
not teach the instruction set. You
should assume your reader has some
other source, such as this tutorial, for
learning the instruction set itself. Thus
a better comment would be:

MVI B,7 ;INIT LOOP COUNT
It is “excusable” to comment “how an
instruction works” when using it in a
non-obvious way, or if it is one of the
seldom-used instructions.

COMPILER

Though not directly related to
assembly programming, people
sometimes confuse COMPILER,
ASSEMBLERs and INTERPRETERSs,
since all provide alternate ways of
making programs.

A compiler is typically a program
which takes source programs in some
high-level language, such as “C",
COBOL or FORTRAN, and produces
a runnable, OBJECT PROGRAM.

When talking about assembly
language programming, it is most cor-
rect to call the program that translates
the SOURCE PROGRAM into the
OBJECT PROGRAM, the
ASSEMBLER.

CP/M

‘Control = Program for Microcom-
puters” an operating system for 8080,

8085, and Z-80 microcomputers writ-
ten by Dr. Gary Kildall, and Digital
Research,Inc.

It loads and executes programs, and
relevant to this tutorial, provides the
environment which supports the
basics for assembly language pro-
gramming: an editor and assembler,
and debugger.

Of interest are the following programs
supplied with CP/M:

ED the editor

ASM ' the assembler

LOAD toload the output of ASM
into a runnable form.

DDT to debug programs

(Ced I8

Stands for Central Processing Unit.
This is a rather “old” term, and often
referred to a ‘huge” cabinet and the
electronics which it held.

In this tutorial, it will typically mean
the 8080 CHIP, or may refer to the cir-
cuit BOARD on which the 8080 is
mounted, as in “What kind of CPU

board are you running”?
DATA

Synonymous with “information”.
Often used as a “generic” word, in-
stead of saying the more detailed
word such as “BIT” or ‘BYTE".

DEBUGGING

Bill Precht, a consultant friend of
mine, once walked into a customer’s
office, and seeing someone working,
asked “What are you doing?”. The
reply “Bugging”. Bill asked “What do
youmean?”’. The reply: “Well, tomor-
row when this program is written, 'l
be de-bugging, so today I must be
bugging.”

CP/M supplies a program to help
debug programs, called DDT, or
Dynamic Debugging Tool. It allows
single stepping a program, or running
it full speed, stopping only when a
particular instruction is executed.

A better one, SID, is available for an
additional charge. I use SID for all my
DEBUGGING as it makes use of
SYMBOLS produced by the
ASSEMBLER. =

Lifelines, October, 1981

9

DIRECTORY

The portion of data stored on a FLOP-
PY DISK which keeps track of where
the various FILES on the disk are.

DISKETTE

A synonym for FLOPPY DISK. See
FLOPPY DISK.

EPROM

“Erasable Programmable ReadOnly
Memory”. An INTEGRATED CIR-
CUIT (or CHIP) which stores data
permanently (i.e. with the power
disconnected), but which may be eras-
ed by being exposed to ultraviolet
light. See PROM.

FILE

The name given to a collection of in-
formation, usually stored on some
medium outside of the computer, such
as cassette, or more commonly, a

FLOPPY DISK.

A file may be a program, or data, such
as names and addresses, financial
figures, experimental results, etc.

FLOATING POINT

A means of storing numeric data
where the magnitude is stored with it.
Contrast this with INTEGER.

Typical microprocessor BASIC IN-
TERPRETERS handle about 7 decimal
digits, and allow the exponent of the
number to be between -38 and+38.
Thus, in scientific notation, the
smallest number they can handle is 1
times 10 to the -38 power, and largest
is 1 times 10 to the + 38.

Some BASICs offer an extended
floating point, which increases their
precision from 7 decimal digits, to 14.

ASSEMBLER programs usually do
not deal with floating point numbers,
as (1) the hardware of most
microprocessors does not provide it,
and (2) subroutines to simulate
floating point are not generally

available.
FLOPPY DISK

A circular disk of magnetic material,
enclosed in a square, usually 5.25” or
8" plastic envelope, upon which data
is magnetically recorded.

10 Lifelines, October, 1981

Recording may be at various “den-
sities” i.e. closeness-of packing of the
BITS, and may be written on either
one, or both sides.

Floppy disk capacity runs from under
100,000 BYTES for a single sided,
single density 5.25" disk, to more than
1,200,000 for an 8", double sided,
double density disk.

Data is stored in “tracks”, i.e. concen-
tric circles which can be accessed by
the “read head” without anything
moving except the disk spinning.

The tracks are divided into SEC-
TORS, typically from 10, to as many
as 58.

The “IBM Standard” single density
diskette has 77 tracks with 26 sectors
of 128 bytes on each, for a total
capacity of just over 250K BYTES.

See also HARD DISK.

FUNCTION

A SUBROUTINE which typically acts
on data passed to it, and returns some
result. Ordinarily, a SUBROUTINE
simply does something, such as print a
line or character, write a record to a
FILE, etc.

A typical FUNCTION would be one
to compute the absolute value of a
number, i.e. if given the value -345,
would return a +345.

HARD CODED

This term typically refers to Input-
Output coding, which is placed direct-
ly in a program.

In a CP/M program, it is possible to
write an assembler program which ac-
cesses the disk, console, and listing
device, without “hard coding” and
1/0.

However, there are conceivably times
when a programmer must ‘hard code’
I/0, such as for a modem, or, because
of some function CP/M doesn't sup-
ply, such as STATUS of the printer
(normally you can just send a char-
acter to the printer, with CP/M
waiting if the printer is not ready. On-
ly in more recent versions is there a

way to test whether the printer is
ready or not.)

HARD COPY

Refers to output, typically to a
printer. Yes, you could just say
“printed output” and not have to say
“hard copy”.

“Soft copy”, a term much less used,
refers to data which you “cannot put
on paper”, such as data being shown
on a video display.

HARD DISK

Refers to magnetic disk storage, in
which the disk medium is usually a
rigid aluminum disk, and which
typically is not removable.

Hard disks have capacities significant-
ly beyond that of FLOPPY DISKs. For
example, the highest common capaci-
ty for an 8” floppy disk is 1.2 MB, an
8" hard disk may have a 40 MB capa-
city. (Note: these numbers are rapidly
changing as technology improves.)

HEX or HEXADECIMAL

A numbering system in base 16. It is
derived from the HEX (meaning 6)
and DECIMAL (meaning 10). It is
much more commonly referred to as
‘HEX'. It is used because of the dif-
ficulty in working with BINARY.
When 4 BITS are grouped together,
they are described as a HEX digit. The
following table shows the relation of
decimal, BINARY, OCTAL and HEX
for the numbers 0-15:

DECIMAL BINARY OCTAL HEX

0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5
6 0110 06 6
7 0111 07 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 e
13 1101 15 D
14 1110 16 E
15 1111 17 F

HIGH-ORDER

In an 8080, an ADDRESS occupies
two bytes. Thus we need a term to
refer to one, or the other.

The one which contains the most
significant part of the address is called
the HIGH-ORDER BYTE; the one
which contains the least significant is

called the LOW-ORDER BYTE.

LOW and HIGH-ORDER also may
refer to BITS, such as the “LOW-
ORDER BIT of a BYTE".

IMMEDIATE

Some instructions manipulate data
which resides in REGISTERs or
MEMORY. Others make use of a
value which is “immediately at hand”,
right in the instruction.

This type of instruction is called an
IMMEDIATE instruction.

The IMMEDIATE DATA in 8080 IN-
STRUCTIONS may be either 8 or 16
BITS.

INDEX REGISTER

A REGISTER, which contains some
value, which is added to the value in
some other REGISTER, to obtain the
ADDRESS of an item of DATA to be
processed.

The Z-80, and some other
microprocessors, contain “true” IN-
DEX REGISTERs, i.e. you may
change the value or “displacement”
stored in the INDEX REGISTER, and
keep the “base” value the same.

For example, suppose you have a
table of 50 1-byte values, and you
want to step through that table. You
can set a “base” register to the table,
then use an INDEX REGISTER to in-
dicate what ‘displacement” into the
table you are currently processing.

At any time, you can set the INDEX
REGISTER to 0, and will thus be poin-
ting back to the beginning of the table.

The 8080 does not have a “true” index
register, i.e. such that by placing 0 in
it, you will be pointing to the “beginn-
ing of something”.

B R .

Instead, what are called index
registers, might better be called BASE
registers, as they point somewhere,
but when you have changed them,
there is no systematic way of return-
ing them to their original value,
without an explicit “load” instruction.

I have not found this to be any hard-
ship: Index registers are very useful in
large computers, where you frequent-
ly deal with fixed length data, such as
80 column cards, or fixed length disk
records.

In that case, you want to be able to
quickly go some fixed displacement
into the record, so index registers are
handy.

In the 8080 however, data is more fre-
quently known not by its position in a
record, but by the context of the data,
such as being separated by a comma
from the item preceeding and follow
ing it. Thus you might “scan” the
record, skipping three commas, to get
to the fourth field, rather than going
to “column 42" to find the start of the

field.

INPUT/OUTPUT (I/0)

To do useful work, a computer must
(1) input data; (2) process that data;
and (3) output the data. Thus the ab-
breviation [/O is frequently used
when talking about the devices or pro-
grams which get data into and out of
the computer.

INTEGER

An item of numeric data, which can-
not take on fractional values. It may
or may not have a sign.

There are several examples under the
term BYTE. However, an integer may
also be longer than a BYTE, and
typically in assembly language pro-
gramming, is 16 bits.

A 16 bit integer can contain an unsign-
ed value from-0 to 65,535, or signed
values from -32768 to+32767.

INTERPRETER
Since I have mentioned ASSEMBLER

and COMPILER, the definition of IN-
TERPRETER will round out the 3

common types of programs used to
process source language programs in-
to a runnable form.

An INTERPRETER is a program
which “looks at” your source pro-
gram, and does what you tell it to do,
immediately.

Contrast this with an ASSEMBLER or
COMPILER, which processes your
source program, producing a run-
nable OBJECT PROGRAM.

The advantage of interpreters is that
they allow errors to be detected, and
quickly corrected, without having to
leave the INTERPRETER “environ-

ment”.

The disadvantages of interpreters are
that (1) they typically take quite a bit
of room, limiting the minimum sized
program you could effectively run; (2)
they are the slowest means of ex-
ecuting programs, since they have to
execute machine instructions “on
behalf” of what you want done, in-
stead of “directly executing” machine
instructions generated by an
assembler or compiler.

(There are exceptions: The language
FORTH is interpreted, yet is still quite
compact and fast. It suffers from you
having to “help” it by translating pro-
grams into “reverse-Polish”, as used
by most of the HP calculators.)

INSTRUCTIONS

The 8080 microprocessor reads IN-
STRUCTIONs from MEMORY and
takes action based upon what the IN-
STRUCTION is. Instructions may be
1, 2, or 3 BYTEs long. They may be as
simple as one which increments the
value in a REGISTER, or as complex
as one which calls a SUBROUTINE
based on some condition.

I have broken down the 8080 instruc-
tions into various categories which
will be individually covered in the
tutorial:

* Data movement-between registers
and between registers and memory

* Arithmetic-only add, subtract, in-
crement and decrement (The 8080 has
no multiply or divide instructions
—you must use subroutines). =%

Lifelines, October, 1981

11

* Stack instructions

* Execution control
Input-Output
* “Other” (not covered above)

INTEGRATED CIRCUIT or I.C.

An electronic circuit combining many
transistors, resistors. The
MICROPROCESSOR CHIP is an IC,
as are the TTL CHIPs used in
MICROCOMPUTERS.

INTERRUPT

Refers to hardware which signals the
MICROPROCESSOR that some ex-
ternal event has happened. It is called
an INTERRUPT because it interrupts
whatever program is executing. Con
trol is then transferred, via a specific
ADDRESS, to a special routine.

This routine typically saves the
registers, executes some specific func-
tion, then restores the registers and
returns to the program which was in-
terrupted.

For example, you could have a
keyboard which INTERRUPTSs the
8080 whenever a key is pressed. The
INTERRUPT handling program
would store the character read into a
BUFFER, and might take some special
action if the character keyed was a
carriage return (end of line). Most
hobbyist microcomputers do not use
interrupts, unless they are ‘factory
built in’ such as in the HEATH H-8, or
the Polymorphics 8080 microcom-
puter.

The reason interrupts are seldom us-
ed, is that they add complexity to the
system, and, in a single user system,
typically do not significantly increase
performance.

For example, for keyboard in put
without interrupts, you just test a BIT
read from an INPUT PORT to see
when a key has been pressed. Another
use for interrupts might be to main-
tain the time of day (some hardware
device interrupts the MICROCOM-
PUTER every second, and the pro-
gram then increments a counter).

12 Lifelines, October, 1981

K

‘K” is the abbreviation for KILO. It
means, not 1000, but rather two to the
10th power, or 1024, of “something”.
For example, a “16K” RAM CHIP
means it has 16x1024 or 16384 BITS.

A MEMORY board, which has 16K
means it has 16384 BYTES.

Sometimes “K” is used to mean speed,
as in a 9.6K baud terminal, which
(oops) means 9600 (i.e. NOT 9 x
1024). (Nobody said this microcom-
puter area is consistent.)

LOW-ORDER
(See HIGH-ORDER)

MACRO

In ASSEMBLY PROGRAMMING, a
means of coding one INSTRUCTION
which in turn generates others.

This makes programming easier, since
where you might have to code, for ex-
ample, 9 instructions in CP/M to
OPEN a file, a MACRO could
generate those 9 instructions for you,
when you code:

CPM OPEN,MYFILE

MB

Abbreviation for Mega Byte, i.e. one
million bytes. For example, a 10 MB
HARD DISK contains 10 “MEG”
bytes. See also MEG.

MB may also be an abbreviation for
the speed, in BITs per second, at
which a particular device operates,
such as a HARD DISK.

MEG

A shortening of “MEGA” meaning
1,000,000. However, since computers
are based on the BINARY numbering
system, MEGA usually refers to, not
1000 x 1000, but rather 1024 x 1024, or
1048576.

MEMORY

The part of a computer where the

PROGRAM, and data, are stored.
MEMORY is divided into BYTES,
each of which has an ADDRESS. The
amount of MEMORY is frequently
described by saying how many
1024-BYTE blocks you have, each
1024 being called a K (for Kilo). Thus
a computer with 8K has 8 x 1024, or
8192 BYTES. The 8080 is capable of
directly ADDRESSing 64K BYTES of
MEMORY. This value is 65,536
decimal, and sometimes is thus
wrongly called 65K.

MEMORY MAPPED

When transferring data between a
microprocessor and a particular
device, you typically address it by its
PORT. However, some devices may
be addressed as though they were
MEMORY installed in the computer.
Computers such as the 6800 and
6502, do not have PORTS, i.e. they
do not have electrical lines to signify
that data is being sent to or requested
from anything other than memory.

Thus, whenever an input or output
device is referenced as though it were
memory, it is said to be MEMORY
MAPPED. It may be as simple as an
address from which you read some
switches, or may be one or two K
bytes, representing a “memory map-
ped” video screen. To “out put” data
to such a screen, you just store data in
the particular one or two K portion of
memory allocated to the screen.

MH:z

An abbreviation for “Mega Hertz", or
“millions of cycles per second”. It is
called ‘Hertz" to honor one of the ear-
ly pioneers, just as we have done with
“Watt”, “Ohm”, “Volt”, and others.

A typical 8080 CPU runs at 2 MHZ,
which means it is capable of doing the
“most simple” thing, 2,000,000 times
per second. By “most simple”, I mean
something like “access memory”, ‘add
2 numbers”, etc.

The minimum number of these “most
simple” things it can do at one time is
4. For example, adding two BYTEs
together, which are both in
REGISTERS, takes 4 cycles, or
1/500,000 of a second. The reason for
taking 4, is that it has to “fetch” the

instruction from memory, “decode”
what that instruction says to do, “do”
the actual operation, and then prepare
to do the next one. The longest 8080
instruction takes 17 cycles to run.

Common usage of MHz is to say “how
fast is a given C.P.U.". For example, a
4MHz Z-80 (*) will execute instruc-
tions two times as fast as an 8080. (Ac-
tually even a bit faster, since the Z-80
executes some instructions in 4 cycles
that the 8080 takes 5 to do).

MICROCOMPUTER

A computer based on a MICRO PRO-
CESSOR CHIP. A typical mic-
rocomputer contains a power supply,
MEMORY, and input-output devices
such as a keyboard, and a display, or
a teletype. In addition, a
MICROCOMPUTER might have a
cassette or floppy disk interface, a
modem for phone communications,
etc.

MICROPROCESSOR

An “integrated” circuit which pro-
vides the arithmetic and logical, ad-
dressing and control functions, basic
to a computer. With the addition of a
power supply, memory and usually
devices to input and output data, a
MICROPROCESSOR becomes a
MICROCOMPUTER.

See also “CHIP”

MNEMONIC

2, 3, or 4 letters grouped together to
represent an INSTRUCTION in the
8080. In this tutorial, the phrase ‘OP
CODE' will be used instead.

An example is “MVI” which stands for
“move immediate”. It is followed by
the OPERANDS, which consist of (1)
the register the data is to be moved in-
to, and (2) the value to be moved.

MODEM

Stands for MOdulator/DEModu-
lator, i.e. a way of taking digital data
(“BITS”) and sending them on a
“medium” such as telephone lines,
which is not directly capable of handl-
ing them.

The modulator changes the data on
the transmitting end, into electrical
tones, and, on the receiving end the
demodulator changes them back into
digital form.

NOT

Just as in “plain English”, NOT means
to “negate” the meaning of something.

In programming, NOT means the
same thing, i.e. “IF A NOT EQUAL
TO B THEN ...” (a valid portion of a
COBOL program). :

It may also mean to “flip” a bit, from 0
to 1, or from 1 to 0.

It most frequently is applied to hard-
ware, where it means to change an
electrical signal’s meaning from TRUE
to FALSE, or from FALSE to TRUE.

Note: Here we end this month’s in-
stallment of Ward Christensen’s ex-
cellent tutorial. You'll want to save
these terms for reference in the future.

A Note
On SBASIC

A bug has been reported which affects
sequential file I/O. If a sequential file
channel is opened for input or output,
that channel will be available only for
input or output throughout the pro-
gram, whether the file has been closed
and re-opened or not.

The fix is to open other channels
under the same filename to use for in-
put or output.

There are a few other problems users
sometimes have with SBASIC. These
are not bugs. When random files are
used people frequently forget that the
first record number is 0, not 1.
Writing to a file with record number
“1” as the first record will produce
“Read/Write pas eor” error messages.
When reading or writing binary
strings, many users forget a that a
length byte precedes each string, so
that a string of length five actually re-
quires 6 bytes of storage in the buffer
or on the disk.

“On error goto” statements cannot be
placed inside the bodies of procedures
or functions. This statement can only
be used in the mainline program.

ZSID
Application
Note

This application note is copyrighted
by Digital Research, Inc. and is
reprinted here with permission of
Digital Research, Inc.

The restart instruction TRACE and
HIST use for setting breakpoints and
tracing program execution can be
chaged by modifying the restart vec-
tor location in TRACE.UTL and
HISTEUTHES

The following procedure shows how
to change the breakpoint vector ad-
dress to 0040H.

A> REN TRACE.LTU=TRACE.UTL
A> ZSID TRACE.LTU
ZSID VERS 1.4
NEXT PC END

0600 0100 nnnn
#5268

0268 39 40

0269 00 .

#S2B8

02B8 3A 41

02B9 00 .

#GO0

A>SAVE 5 TRACE.UTL

A> REN HIST.LTU=HIST.UTL
A> ZSID HIST.LTU

ZSID VERS. 1.4

NEXT PC END

0600 0100 nnnn

#527C

027C 39 40

027D 00 .

#GO

A>SAVE 5 HIST.UTL

JITISIEL ST S

Lifelines, October, 1981 13

Assembly Language Interface to PL/I-80......

...o.o. o.o .o. o.oo. o.o .o. o.o .-. o.o .o. o.o .-. o.o .o. o.o .o. o.o .o. o.o .o. o.o P a /,ZL 2

by Mike Karas

The following short file is a single statement PL/I-80
declare statement that defines in PL/I-80 syntax, all entry
points that are given in the preceding assembly language
program. The file is used so that the same set of declared
variable names can be used in multiple PL/I-80 source
programs without having to type them in all the time,
risking errors or omissions. The PL/I-80 language con-
tains a feature called the “%include” statement that allows
the following file to be put in as part of the source code as
simple as typing the following code as part of your pro-
gram:

%include ‘bioscall.dcl’;

This will insert the following text into the program source
code at the point where the % include appears. Note that in
the above syntax the file BIOSCALL.DCL" is expected to
be contained upon the same disk drive as the source pro-
gram. Explanation of the statement formats of the
declared entry points will be left for the examples below.
An example of the “%include” function appears in the disk
copy program below.

File “BIOSCALL.DCL”

/*Define names and procedure characteristics for the*/
/*MICRO RESOURCES Direct BIOS Access Procedures of */
/*'PLIBIOS.ASM” and PL/I-80 linkable module */
/*'PLIBIOS.REL" */

dcl
cboot entry,
wboot entry,
cstat entry returns (bit(8)),
conin entry returns (char(1)),
conout entry (char(1)),
list entry (char(1)),
punch entry (char(1)),
reader entry returns (char(1)),
home entry,
seldsk entry (binary fixed(7)),
settrk entry (binary fixed(15)),
setdma entry (ptr),
read entry returns (bin fixed(7)),
write entry (bin fixed(7))

returns (bin fixed(7)),

Istat entry returns (bit(8)),
sectran entry (bin fixed(15))

returns (bin fixed(15));

An example of how to make use of the assembly language
BIOS access routines is presented below in the form of a
PL/I-80 source program that is a floppy disk copy pro-
gram. First let me describe the intent of the program and
then show a few examples of how the external BIOS entry
points are accessed. The diskette copy program allows full
copying of a diskette in Drive A: to the diskette in Drive

14 Lifelines, October, 1981

B:. Tracks are buffered in memory in track buffer arrays
so that a whole track may be read at a time to make the
program run reasonably fast. (Incidentally, this copy
operation runs almost as fast as most assembly language
copy utility programs I've seen except for those that buffer
more that one track at a time.) Tracks are read sequential-
ly from the HOME position of Drive A: and written to the
corresponding positions of Drive B:. After writing, the
Track is reread from Drive B: and compared byte for byte
with the image read in originally from Drive A:. Any er-
rors are reported as to track and sector number to inform
the operator of any difficulties encountered along the
way. At the completion of the copy process the operator is
prompted to see if another copy is desired before re-
shooting the system disk in Drive A:.

All console interface and program logic structure is im-
plemented in the easy to program PL/I-80 syntax. Speed
dependent and hardware specific I/O access in the pro-
gram makes use of the BIOS access external entry points.
The following examples show some of the external pro-
cedure references made to the entry points defired in
“PLIBIOS”. In the following paragraphs some familiarity
with the PL/I-80 language structure is assumed. A tutorial
on the structure and syntax of the language is somewhat
beyond the intended subject of this article.

EXAMPLE ONE. Calling The CONSOLE INPUT EN-
TRY POINT (CONIN)

The console input entry point is declared as an external
entry point in the BIOSCALL.DCL include file as follows:

DCL conin entry returns(char(1));
This defines conin as a function procedure with procedure
invocation by name in an expression. The implicit CALL
to the routine will return the declared type of value,
CHAR(1) in this case, to the point of the call. The example
from the disk copy program has the conin call at the point
of waiting for an operator response. A character string,
declared as follows:
DCL resp char(80) /* operator response buf */ ;
is designated to receive one console character with the
following statement. The NULL parentheses reference
designates conin as a function procedure with no passed
parameters. In this case resp

resp = conin();

becomes a string of one entered character padded on the
right with 79 blanks.

File dskcpy.pli

Full disk copy program to demonstrate the direct CP/M BIOS access facilities presented in the accompanying article,
‘Assembly Language Interface to PL/I-80." Track by track copying is utilized through the direct BIOS access facilities

of the linked assembly language program ‘PLIBIOS'.

This PL/1-80 Source Code is Copyright Protected by: MICRO RESOURCES, 2468 Hansen Court, Simi Valley, CA

93065. Phone: (805) 527-7922.

dskcpy:
proc options(main);

%replace

trk—per—disk by 77, /* logical bios tracks/diskette */
sec—per—trk by 26; /* logical cp/m sectors/track */

/* external CP/M bios entry points */

%include 'bioscall.dcl’; /* bring in the bios entry point

definition file that defines
bios function entry points*/

dcl
resp char(80), /* operator response buf */
inbuf(sec—per—trk) char(128)
based(p), /* input buffer */
outbut(sec—per—trk) char(128)
based(q), /* output buffer */
trkno
secno bin fixed(15),
(i,j, k1) bin fixed(15),
(p.q,s) pointer,
e5var bit(8) based(s),
eSchar char(1) based(s),
e5trk bit(1), :
skew(sec—per—trk) bin fixed(15) static init(
1,7,13;19,25;5,1117,23,3,09,15,21,
2,8,14,20,26,6,12,18,24,4,10,16,22),
e5string char(128),
partab pointer; /* disk parameter table ptr */

/* Print initial message for Diskette copy from drive A: to B: */

put edit(MICRO RESOURCES Diskette Copy program in PL/I-80 ’,

PO
"Version 1.1 of August 3,1981")
(col(1),3(a));
Y
copyloop:
put skip edit('Insert Source Diskette in Drive A/,
"AiDepress «cr> when ready ’)(col(1),a);
resp =conin();

newdisk:

put skip(1) edit('Insert Destination Diskette in Drive B:’,
"AiDepress «cr» when ready or «ctl-C> to quit’)
(col(1),a);
resp = conin();
if resp="AC’ then do;
put edit('Remember to Re-Insert your CP/M ’,
'System Diskette in Drive A/,
" A iDepress«cr> when ready)
(col(1),a,a);
resp = conin();
stop;
end;

=
Lifelines, October, 1981

15!

Did your subscription begin in
November of 19807 If so, you have
received a letter from us about renew-
ing your subscription. Don't put off
renewing or you'll miss out on our
upcoming issue.

Rumor Has
It:-.

...that a new Spanish version of
WordStar is in the works, and that
French and German versions may also
be planned.

...that the report generator for
DataStar files will probably be releas-
ed at the end of the year.

N N o N N N T g e

AV 2RV VL VU UV Y S e

16 Lifelines, October, 1981

doi=1 to 128;
end;
trklp:

put skip(1) edit('Copy in Progress...")(col(1),a);

allocate inbuf set(p); /* setup buffer storage */
allocate outbuf set(q);

allocate e5var set(s);

partab =seldsk(0);

call home;

partab=seldsk(1);

call home;

eStrk="0b;
eSvar='e5'b4;

substr(e5string,

/* setup simple OEH insertion */

/* select disk a: (0) */
/* restore it */

/* select disk b: (1) */
/* restore that too */

/* e5 end track scan switch off */

/* fill e5 record check string */
i,1)=e5char;

do trkno = 0 to trk—per—disk-1 while(Ae5trk);

partab =seldsk(0);

/* select source */

call settrk(trkno);

j=0;

/* set empty sector counter off */

/* read source track loop */

do secno

= 1 to sec—per—trk;

call setdma(addr(inbuf(secno)));
call setsec(skew(secno));

/* sectors are zero based */

/* for some CP/M 2.2 BIOS’s */
/* if so replace (secno) with */

/* (secno-1) o/

if read()A= 0 then do;

end;

partab =seldsk(1);

put edit('Read Error On Control Disk - Track
trkno,” Sector ’,secno)
(col(1),a,£(3),a,£(3));

put skip(2) edit('Restart Copy ,
'Process with new Source Diskette.’)
(col(1),a,a);

go to copyloop;

end;

/* select destination */

call settrk(trkno);

/* write destination track loop */

do secno = 1 to sec—per—trk;

call setdma(addr(inbuf(secno)));
call setsec(skew(secno));

/* sectors are zero based */

/* for some CP/M 2.2 BIOS’s */
/* if so replace (secno) with */

/* (secno-1) i

if write(2)A= 0 then do;

put edit (‘Write Error On Destination’,
"Disk - Track ’,trkno,
" Sector ’,secno)
(col(1),a,a,f(3),a,f(3));

put skip(2) edit (‘Bad Diskette in Drive ’
‘B:, try another.’)(col(1),a,a);

go to newdisk;

end;

’

end;
/* read back destination loop */

do secno = 1 to sec—per—trk;
call setdma(addr(outbuf(secno)));
call setsec(skew(secno));
/* sectors are zero based */
/* for some CP/M 2.2 BIOS’s */
/* if so replace (secno) with */
/* (secno-1) */

if read()A= 0 then do;
put edit (‘Read Verify Error On Destination’,
" Disk - Track ’,trkno,
" Sector ’,secno)
(col(1),a,a,f(3),a,f(3));
put skip(2) edit (‘Bad Diskette in Drive ’,
‘B:, try another.’)(col(1),a,a);
go to newdisk;
end;
end;

/* data compare loop */

do secno = 1 to sec—per—trk;

if inbuf(secno) = outbuf(secno) then do;
put edit ("Verify Data Compare Error ’/,
trkno)

(col(1),a,£(3));
put skip(2) edit (‘Bad Data on Diskette ',
‘in Drive B:, retry same diskette.’)
(col(1),a,a);
go to newdisk;
end;
if inbuf(secno) = eSstring then j=j+1; /* empty sector *
end;

if j=sec—per—trk then do;
e5trk="1'b;
put edit ('Track by track copy complete ’,
‘at track number ’,trkno)
(col(1),a,a,f(3));
end;
end trklp;

free inbuf;
free outbuf;
free e5var;

put skip edit('Do you wish to Copy This Another Diskette (Y/N) ’
(col(1),a);
resp =conin();
if (resp = "Y’) ! (resp = y’) then go to newdisk;
else stop;
end dskcpy;

=
> Lifelires, October, 1981

To compile the PL/I-80 program given above the following operational sequence would be used to invoke the Digital
Research PL/1-80 compiler to process source file ' DSKCPY.PLI’. Lower case characters after the ‘A’ prompt are those
typed by you the operator. Other text is the output of the compiler to the console screen.

A pli dskcpy«cr» «= = Extent of .PLI is assumed
PL/I-80 V1.3 COMPILATION OF: DSKCPY

%include ‘bioscall.dcl’; «== Compiler brings in prev-
iously edited DCL file for
all external entry points
in the PLIBIOS.REL’

module.
NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2 «== Compiler informs us of
‘ pass completions.

CODESIZE = 05A9 «== Compile statistics for
DATA AREA = 044F ‘REL’ file of 'DSKCPY".
FREE SYMS = 2BBF
END COMPILATION
A

The next step to get a final disk copy program out of all of this work is to link the ‘REL’ (relocatable object code)
modules of ‘DSKCPY’, ‘PLIBIOS’, and the necessary subroutines from the Digital Research PL/I-80 run time library
together into a .COM' file. The LINK 80 linker from Digital Research does the job nicely with the following console
operational look’. As before, the text in lower case following the A» prompt was that typed by the operator performing
the link process. (Please note that the symbol values given may not necessarily coincide with those for your version of
the above program; especially if you slightly modify the text strings and sign on messages in the PL/I-80 source code
listing).

A
A link dskcpy, plibios «== ' REL’ extensions assumed

and output to DSKCPY.REL

is the default output.
LINK 1.3
PLILIB RQST DSKCPY 0100 CONIN 06CC SELDSK 0705
HOME 06FF SETTRK 070E SETDMA 0720 SETSEC 0717
READ 0732 WRITE 0738 CBOOT 06BA WBOOT 06CO
CSTAT 06C6 CONOUT 06D8 LIST 06E1 PUNCH 06EA
READER 06F3 LSTAT 06F9 SECTRA 0729 /SYSIN/ 27E7

/SYSPRI/ 280C

ABSOLUTE 0000 «== Link prints eut module

CODE SIZE 266B (0100-276A) size and address statistics

DATA SIZE 06E2 (285A-2F3B)

COMMON SIZE 00EF (276B-2859)

USE FACTOR 95 «== Hex percent of symbol table
usage.

A>

18 Lifelines, October, 1981

The rest is up to you. I have provided an example of how assembly language routines can be tied to PL/I-80 to implement
special functions that are beyond the scope or capability of the language. In this case they were simple examples of inter-
face conversions for BIOS access. Other examples of assembly language routines that could be made include “IN and
OUT" functions for direct language access to machine dependent input and output ports, high speed special access drivers
for math chips such as the Intel 8087, or tightly coded interrupt service routines to increase program performance where
PL/I-80 is used as the host development language in a real-time application.

Operation of the above example should be self-evident from a detailed study of the source listing. The best way to tackle
your own problem is to dive right in. For those who feel that they need a little more structured approach or partly im-
plemented feel for getting started, I am willing to provide the source code for all of the modules described in this article on
a single density CP/M compatible 8 inch diskette free of charge if you just send a diskette, mailer, and return postage to the
address given at the beginning of PL/I program listing. Feel free to make use of any new ideas you see here however you
see fit.

KIB-BITZ

QUITTING TIME! — LEAVE IT FoR ToMoRRoW, |YOU'VE GoT
LET'S Go HAVE A BeeR! LET'S GET our ofF Herel| [TO GET oUT
ersa MORE ! You

2 % 3] X (Come on! CANT SPEND
stow JuNK/! ALL DAY AND.
= =\ NIGHT HERE!
) GV S e WG
S = L ==
= :.___/ ” A ~ £
G —| =, 2
‘» %/ ! f; 1)) %
g / p— =
AW e Ef =
You'VE BECOM? A SLAVE ToO \QHIH[HHHH'/’;XMlm\\1\\‘{\"_’}”\ | \\ ’)'
THAT THING® ... ARE You 5 'C ’ [0
LISTENING To ME? , TB/S |‘3)an | ,]|
| £2) RELAX, MIKE. YOU'RE :gEcuRt/Tg

RIGHT. LET's Go.
=N

Q=i
THRE COMPUTER

uflg "ff'./.!g!

M e

Lifelines, October, 1981 19

ABBS, CBBS, FBBS, RBBS, ETC,,
Maybe you,d like to start one to0? .y vimwis

In this article I am going to attempt to
tell you how to start a CBBS™ or
“software swapboard” (CBBS «» soft-
ware swapboard). I am limiting
myself to Ward and Randy’s CBBS
since | used to run one, and to the
RBBS-type of software swapboard
system, since I have that software
available to me. Perhaps someone
familiar with an ABBS, a FORUM-80,
or another system will write an article
for a future issue. So much for objec-
tives.

A Little History: CBBS

In February of 1978, only two years
(and some odd months) after MITS
Altair introduced the first “home com-
puter,” two computer hobbyists in the
Chicago Area started the first
microcomputer Computerized
Bulletin Board System, or CBBS.
Those two hobbyists are Ward
Christensen and Randy Suess, who
still operate their CBBS at
312-545-8086 (like the number?). It
should be noted that the terms “Com-
puterized Bulletin Board System” and
“CBBS” are trademarked by Ward
and Randy, a fact of which many
seem to be ignorant.

Originally planned in January of
1978, the CBBS was at first meant to
be a gathering place for the Chicago
Area Computer Hobbyist Exchange
(CACHE) newsletter articles. That
idea was soon dropped and a
messages-only system resulted. Ward
and Randy have considered going to a
software swapboard type of system,
but the current CBBS is overly busy as
it exists now. Software swapboards
take significantly more time per caller
than a message-only system. Also, a
substantial amount of software
rewriting would need to be done to
convert CBBS to MP/M or some
other time-sharing system, not to
mention the hardware expense.
Another alternative would be to go to
a system using “slave” computers to

20 Lifelines, October, 1981

answer the phones, each running
CP/M and CBBS, and a “networked”
master computer for the file handling
(MP/M and CP/NET). Some changes
to CBBS software would still be re-
quired, and the hardware costs re-
quire a wealthy owner.

A Little History: RBBS

RBBS (Remote Bulletin Board
System?) is actually derived from
RIBBS. RIBBS is a BASIC program
written by Bruce Ratoff of the
Amateur Computer Group of New
Jersey (ACGNJ) and used under
CP/M as a message program.

ALL software swapboards (that I have
seen, anyway) hinge upon a program
which ties the phone-answering
modem to the console, usually with
both the local console and the modem
doing simultaneous console I/O (in-
put/output). The original program
for doing this was written by Dave
Jaffe, formerly of CACHE, now
somewhere in San Francisco hiding
out from “BYE” users (just kidding,
Dave!). BYE is the name of that
original program, now greatly
modified by many people.

How BYE Works

In CP/M, all transient programs load
and execute at an address of 0100H,
the TPA, or transient program area.
Well, what BYE does is load into this
area from disk, check to see if BYE is
already running in upper memory
(says “"GOODBYE, CALL AGAIN” if
so), and, if BYE isn't running, boots
itself up to the top of memory (usually
the top of memory above the CP/M
0.S.) so that you can run OTHER
programs at 0100H. BYE resides in up-
per memory and intercepts console
[/O for your modem. Disk I/0O,
printer 1/O, etcetera remain unaf-
fected. Fairly.simple to explain, not so
simple to program.

Starting a CBBS

If you are planning to run a message-
only system, such as CBBS, you
needn’t use BYE, although using BYE
may save you having to chop up your
CP/M BIOS (Basic Input Output
System).

I have talked to Ward Christensen
about running CBBS under BYE, and
there is one drawback. If a caller
“hangs up” while the CBBS is still do-
ing file I/0O, some files may not be
closed or updated as is the case during
normal CBBS usage (where the
modem I/0 is handled in the BIOS).
Normally, the way Ward and Randy
suggest you set up your I/O, the
CBBS will detect the loss of carrier, do
all the appropriate file I/O, and hang
up the phone. But, if you run CBBS
under BYE, BYE will detect the loss of
carrier, hang up the phone, and wait
for the next call despite the fact that
CBBS may be running in lower
memory with files still not updated.
So, what does all this mean? Well, if
you want to run CBBS under BYE as
part of a software swapsystem, or just
as a method of handling modem I/0O,
you will have to modify BYE (and
maybe CBBS) so that BYE will know
if CBBS is running and NOT hang-up,
but let CBBS hang up, and maybe
CBBS should test to see if BYE is runn-
ing in order to set a switch in BYE so
that BYE will KNOW that CBBS is
running ... whew! That’s a mouthful!
As far as BYE goes, I think it also
ought to be made relocatable (like
DDT or SID) so that it will run in a
full 64K system (at the top of the
TPA). Maybe I'll tackle that project at
some time in the future, enough
sidetracking for now, back to the
main discussion...

Normally you will have to add the
modem I/O routines to your BIOS so
that CBBS will talk to your modem as
well as the local console. This is done
in the CONIN, CONOUT and CON-
STAT routines of the BIOS. It may be

simpler to modify and assemble BYE if
you are not a “hacker” when it comes
to 8080 assembler language. (I'll tell
you later what a hacker is -if you don't
know, you aren't). If you tell your
users to wait for the CBBS's “END OF
CONNECTION"” message before
hanging up, you shouldn’t have any
errors.

If you wish to use Ward and Randy’s
CBBS package, send fifty dollars to
Randy, payable to Randy Suess, at
the following address: 5219 Warwick,
Chicago, IL 60641. You should also
send a copy of the license agreement
form which may be obtained from
Ward and Randy’'s CBBS. See
messages 9, 10 and 11. If you don't
send the form, Randy will most likely
send you the form to fill out before he
sends the software. The CBBS soft-
ware is provided on two disks, in 8080
assembler source code with numerous
documentation files and utilities. The
CBBS software is extremely
modularized and is assembled with
LINKASM, which is included. There
are several modem I/O files, which
brings us to the subject of what hard-
ware is required for CBBS.

Note that the source code is 8080
assembler -this should tell you that
you have to have an 8080, 8085, or
Z80 processor chip, as well as CP/M,
which CBBS runs under.

Well, you need a computer, of course,
preferably one that doesn’t object to
24-hour usage. You will need a
modem that is capable of automatical-
ly answering the telephone. I recom-
mend the MM-103 from Potomac
Micro Magic in Virginia, but the DC
Hayes and IDS work well, as do many
“separate” modems that are made to
be able to answer the phone, but
usually cost more due to extra packag-
ing, power supplies, etc. (The PMMI,
DC HAYES, and IDS modems drop
right into an S-100 slot).

Of course, you need a phone line for
the CBBS, usually one that is a
24-hour computer line, although some
folks run it part time. A clock board,
such as the Sci-tronics is nice, but not
an absolute requirement. So much for
hardware.

Let's assume you now have a com-
puter with a phone-answering
modem, you have the CBBS software
in front of you, and you are ready to

make it leap over tall buildings, etc.
Well, first and foremost, read the
documentation files. (That’s like
reading the instructions before
assembling the toy). Believe me, it'l]
help, unless your name is Ward
Christensen. In fact, I recommend
printing out all the .DOC and .ASM
tiles before you do anything else!

Ok, you got them all printed out, and
you've read all the documentation.
Now what? Well, you should have a
fair idea from the .DOC files, but the
next thing is to start modifying the
.ASM files to match up with your
equipment. Do you use a 4 Megahertz
Z-80? Do you use a PMMI, IDS, DC
Hayes, or another modem? There are
assembly language options for all of
these variables, mostly true/false
switches. If you use a PMMI, make
sure the base address is the same as
yours in the file CBBSPMMI.ASM so
that the CBBS will find your modem
where it expects it to be. You will
want to modify two places in
CBBSWORK.ASM & CBBSDISK.ASM
to insert your name and phone
number(s) in place of Ward and Ran-
dy’s. You will want to tell the CBBS
program whether or not to log to a
teletype, or if you have a clock board.
Then you're ready to assemble the
program, which will take about 6 or 7
minutes on a 2 MHz 8080 using
LINKASM, and another 2 minute or
so to load using LOAD.COM. You
may wish to set the TEST’ switch to
true and try the CBBS out without the
modem [/O, just to make sure
everything is OK before going on-
line.

Now you have a “ready to use” CBBS
program. How about I/O? The CBBS
expects to find the modem I/O along
with the console I/0O. You can write
up a special BIOS for CP/M, or you
can use BYE. Use of BYE requires the
computer to be running all the time,
unless your CP/M is set-up to do
“BYE /A" as the initial command.
CP/M can boot-up a program on cold
boot, if you do a start-up and reset
when the phone rings. See the .DOC
files that come with CBBS for more
explanation if you are interested.
Also, the PMMI MM-103 comes with
a drawing showing you how to build a
circuit that will turn your computer
on when the phone rings. If you use
the latter method, and if you want to
run only CBBS, you must modify BYE
to bring up a specified program after it

loads, or you must have the modem
[/0 in your BIOS.

If you've gotten this far, you're ready
to try it. If you don’t have a second
computer (or terminal with acoustic
coupler) to call in on, then you'll have
to have a friend try to dial it up. If it
doesn’t work perfectly, it's just like
trouble shooting any other program --
take it a step at a time, and good luck.

Starting a Software Swapboard

Actually, starting a swapsystem is
easier, in some ways, than starting a
CBBS. In a CBBS the user calling in on
the modem cannot get to CP/M com-
mand level -he is stuck in CBBS. On a
swapsystem, you want him to be at
CP/M's command level so that he can
look at the programs that are on-line
and “modem’ programs to or from
your system. You don’t want him to
be able to get your copyrighted soft-
ware though! There are several ways
to do this. One is to DDT your CP/M
.COM file, find the commands in the
CCP (look for DIR, TYPE, SAVE, etc)
and modify them so that the user can't
do a “USER” command, for example.
Then, you place .COM files on disk
that are named DIR.COM,
TYPE.COM, etc. These types of files
are usually made system files so that
they are invisible to the user. It is
assumed that the user will have some
familiarity with the CP/M operating
system. Usually the DIR.COM pro-
gram will be SD.COM (in real life,
like Clark Kent and you-know-who).
Similarly TYPE.COM will really be
MLIST.COM.

Ok, you've kept the user away from
the normal CP/M CCP commands
and put substitutes in their places as
.COM files on disk. What next? BYE
is next. You must make modifications
to BYE.ASM to make it work on your
system. This includes leaving enough
memory above your CP/M for BYE to
fit into, as it runs outside of the TPA.
Once BYE is running properly, you're
on-line! There are some other plann-
ing considerations, such as whether or
not you plan to have a message-board
such as CBBS and disk space. Disk
space? Yes! Swapboard users want all
kinds of free software. That's what
swapboards are all about! That means
you must have a lot of disk space. I
have checked into some swapboards
running on two five-inch drives, but

=
Lifelines, October, 1981

21

most swapboards use two or more
eight-inch double density double sid-
ed boards. If you format with a 1K
sector size that gives you about 1.2
Megabytes of storage per drive. If you
have a hard disk drive (and money,
incidentally) then you have it made.
You can put all the CPMUG disks on-
line on your hard disk, right? It better
be a big disk! The CP/M Users Group
is now up to 54 volumes. And you
better leave room for growth -the
group is constantly growing.

What most sysops (system operators)
do is put on-disk the most popular
and current files, and put special files
on by request (with usually a day or
so notice). This seems to work out
fairly well, but it has been my ex-
perience that the most popular swap-
boards are the ones with the double-
sided double-density 8-inch drives or
hard disk drives (that means the most
busy lines also, but it comes with the
good service, unfortunately.).

Well, I hope that this article has
helped some of you. Most of the
documentation is pretty self-
explanatory with the software that
comes with these systems (CBBS,
RIBBS, etc.), so you shouldn’t have to
much trouble. If you can’t hack it, get
a “hacker” to help you. Now you
know what a “hacker” is!

The Dentist’s Office: PAS-3 and Univair

e d B lad B ladBlad B lad B ladBla"d B la"d B ia"d B a4 3
~] |~~] |~ |~ |~ |~] |~] |~] |~~] |~ by Tom Crites

Problems

The basic problem with a dentist’s of-
fice, as with any office, is productivi-
ty. If an office wants to grow and ex-
pand it has to either increase its staff
or increase the efficiency of its existing
personnel. Looking at current trends:
productivity on the decline and wages
increasing—hiring new employees is
not always the best solution.

Solutions

A major consideration should be buy-
ing a computer system. With the cost
of computers on the decline, what was
not cost justifiable a few years ago is
very possible today. With a com-
puter, an office can increase produc-
tivity without increasing its staff, by
freeing up existing employees’ time
and allowing them to work on more
important tasks. More important than
the computer itself (hardware) is the
software, or programs, which make
the machine perform particular tasks;
store data, recall data, process data,
etc. Today, with hardware coming
down in price and most vendors sup-
plying very similar hardware, it is not
as important a decision as it has been
in the past. Today one must look
closely at the application programs
that are available and make sure what
is purchased is exactly what is desired.

What a Dental Management program
should provide

A good dental management program
should eventually reduce the work
load in an office. This is accomplished
by streamlining the handling and pro-
cessing of all the pertinent patient in-
formation, such as billing, insurance,

22 Lifelines, October, 1981

and scheduling. As a by product of
maintaining this information a
multitude of reports can be generated:
analysis of service reports, producer
reports, and delinquency reports, to
name a few. These reports are impor-
tant in bettering the management of
an office.

The files

All of the data of the dental manage-
ment system is stored in a collection of
files that are maintained by the pro-
grams making up the system. From
looking at and reviewing these files in
a system the user can get a good idea
of what information must be entered
into the system, how that information
is stored and what reports can be
generated from the data. Below is a
list of the major files maintained by a
dental management system.

[0 Patient file-common data each pa-
tient.

[0 Dependent file-information on a
responsible party’s dependents.

O Insurance file-insurance informa-
tion on various patients.

[0 Code file-codes and standard fees
for particular procedures.

[J Diagnostic code file-descriptions
of diagnostic codes.

0 Doctor file-information on each
doctor in the practice.

[J Analysis file-information required
to generate analysis of services reports

(i.e. time, service, amount, doctor,
etc).

[J Billing file-information on how the
billing forms are to be generated.

[0 Insurance form file-once an in-
surance form has been laid out it is
stored in this file and then referred to
as a number.

[J Recall file-contains the recall in-
formation on various patients.

The programs

The files themselves are important,
but even more important are the pro-
grams to access and easily maintain
these files. These programs must be
well written with the end user in
mind. They should allow a smooth
flow through the system; from when
the .system is turned on to the par-
ticular function the user wan:s to per-
form.

Procedure (Data entry, update and
retrieval)

Entering Initial data:

As with any program such as this the
initial glamour of the system is tar-
nished by the fact the the data base
must first be entered. This includes
entering the chart of service codes and
standard fees, doctor data, billing
forms, the insurance forms, and final-
ly entering all the patient data into the
computer. This is a very time consum-
ing task but when completed, it is well
worth the effort.

An important difference between the
two packages, which is important to
all dentists, is in the area of printing

insurance forms. UNIVAIR has the
standard ADA insurance form pre-
programmed into the system. If it is
necessary to run any other insurance
forms you must contact your
representative, (however multiple
forms can be recalled from the
system). With the PAS-3 system the
insurance forms that are needed are
laid out, programmed into the
system, and then referred to a number
(standard ADA insurance form is
form number 1, Blue Cross-form
number 2, etc.). With this system any
number of insurance forms may be
entered into the system by the end
user and then simply recalled by a
number. Handling insurance forms
this way is time consuming in the
beginning, but in the long run it saves
time, and makes the system much
more versatile.

Daily Data entry

The simplicity of data entry is very
important with any system, but it
must also have data screening and er-
ror catching routines to maintain the
integrity of the data base. The major
difference between the PAS-3 and the
UNIVAIR systems is in the way that
the patient accounts are set up. In the
PAS-3 system each account number is
set up with a responsible party. Any
dependents the responsible party
might have are tagged onto this
number. This technique is quick and
efficient, because in most cases when
the patient is first entered into the
system, the billing and insurance in-
formation is entered once for the
responsible party, with any depen-
dent also using this information.
However this system does have a
disadvantage in that all charges and
payments to a responsible party’s ac-
count are put in one balance forward
account, not credited or debited to
each dependent. This can cause pro-
blems if, for insurance reasons, an of-
fice has to keep track of what
payments are for which dependent.
UNIVAIR handles each individual in
the system with a separate account
number. This solves the problem of
what payment gets credited to which
account. However it also creates con-
siderable overhead, on having to
maintain separate account numbers,
addresses, insurance information, etc.
on each individual.

Maintaining data
The system must also have a way to
maintain the data base once it is

entered. This function is provided
through a series of utility programs
which are used to change and update
information once it has been entered
into the computer (delete, add, or
change patients, service codes,
diagnostic codes, etc.). With the
UNIVAIR system, if a patient’s record
must be updated and their account
number is not known, a separate
search program can be run to find it
by keying in the name and the edit
program is run using the account
number for a reference. With the
PAS-3 system, any patient record
may be called up for reviewing or
editing by either the patient name or
number. This may seem trivial, but in
the long run could save time from
jumping from one program to
another.

The reports (Generating reports)
Below is a summary of reports
available with each of the systems.

PAS-3 System

O Daily
Charges & Receipts
New Accounts
Producer report

[0 Monthly
Delinquency Reports
Account receivable aging
Insurance Billing
Regular Billing

[0 Special Reports
Analysis of services
Dump of all patients on disk
Query Program

UNIVAIR

Patient master-numeric or alpha-
betic

Patient number listing

Patient scheduling

Ticket register-by clinic or doctor
Payment register-by clinic or
doctor

Print monthly statement

Print mailing labels

ADA procedure report-by clinic
or doctor

Trial balance-detailed or summary
Aged trial balance

Print insurance forms

OoR oo . 0 EEE

The reports available with the PAS-3
and the UNIVAIR systems are similar.
The processing of a report in either'
system for the most part consists of
selecting a report number and then
hitting the appropriate key.

Overview

In general I would say both of these
packages are well written. I have
spoken with end users of both systems
and from all indications, the pro-
grams work well. For all practical pur-
poses, they both supply the same end
product; a series of functions and
reports that aid the dentist in the
management of his office. Each
system goes about this process a little
bit differently. My advice to anyone
interested in purchasing a dental
management program is to first get
the manuals of any software packages
being considered and go over them in
detail. The quality of the manual
might give you an indication of the
quality of the software, and by com-
paring the manuals you will get a bet-
ter idea of which system is particular-
ly suited to your needs and present
office procedure.

Lifelines, October, 1981

23

Better Random
Numbers b Bill Burtdi

NN

Editor’s note: This article was received before our last
issue was mailed. It is for this reason only that the author
has not acknowledged the random number seeding pro-
gram, submitted by Bob Kowitt, Lifelines, September,
‘81.

Many computer simulations of actual random events fail
because they rely solely on sequential calls to pseudo-
random number tables. Simulated results produced by
this method are not truly random and can eventually be
predicted.

I will describe by which a simulated deck of cards can be
shuffled adequately in BASIC. I chose card shuffling
because it requires that a reasonably large sequence of
values (52 for a single deck) be rearranged in unpredic-
table order.

It should be understood that any.use of pseudo-random
values will produce a less random mix than a thorough
manual shuffle of a real deck. However, this limitation
may be minimized so that it becomes virtually impossible
for a human player to deduce the values of undealt cards
or concealed cards in a computer’s hand.

This is accomplished as follows:

Read value from a ‘counter’

Use that value to seed RND function.
Read counter again

Discard some random numbers

Use some random numbers

Return to step 3:

S eLIi

An interesting approach to seeding BASIC-80's random
number generator (requiring a Z-80) appeared in Lifelines
- August, 1981 (Random Numbers for Microsoft BASIC).
The author, James R. Reinders, wisely observed that pro-
gram users should have no control over random number
sequences. The techniques described in that article derive
a random seed value by sampling the refresh register, and
have in fact been used to implement the RANDOMIZE
function in some Z-80 BASICs.

The counter may be iii.plemented by hardware (as in the
Z-80 refresh register) or in software (integer variable ‘T" in
the program below). In either case, the counter must be
able to continuously cycle through a preset range of
values. The value read from the counter at the precise mo-
ment when certain input conditions are met is used either
to seed BASIC’s random number generator or to deter-
mine how many random numbers are to be discarded
from the series.

It is very important that the counter be capable of in-
crementing fast enough to ensure a sufficient variety of

24 Lifelines, October, 1981

possible values. Hardware counters or those implemented
in machine language will easily satisfy this condition. If
the counter is a BASIC variable, it should begin to incre-
ment whenever a new screen is displayed. The few
seconds required to read the screen will allow enough
delay for the counter to cycle to an unpredictable value.

The following program was excerpted from a poker
simulation which I am writing. It shuffles a single deck
and deals two five card [draw poker] hands.

100 “*%*%* DEMO PROGRAM - WRITTEN FOR BASIC-80
110, :DEFIND: A, I, d5 K, Ly T

120 DIM A(52), V$(13), S$(4), H$(10), C$(10)
130 0% ="OF " : T=0

140 FALSE%=T : TRUE%=NOT FALSEZ

150 FOR I=1 TO 52

160 A(1)=I

170 NEXT I

180 FOR I=1 TO 13
190 READ V$(I)
200 NEXT I

210 FOR I=1 TO 4
220 READ S$(I)
230 NEXT I

240 -

250 “*%*%%* GSEED RND FUNCTION
260 PRINT "ENTER “B” TO BEGIN ";
270 WHILE E$<>"B" AND E$<"b"

280 E$=INKEY$: T=T+3

290 IF T>256 THEN T=T-256
300 WEND

310 RANDOMIZE(T)

320 -

330 “*%%%* MATN PROGRAM DRIVER
340 WHILE TRUE%

350 GOSUB 410
360 GOSUB 540
370 GOSUB 620
380 WEND

390 %

400 “*%%%* DISCARD SOME NUMBERS

410 PRINT : PRINT : E$=""

420 PRINT "ENTER “D” TO DEAL =
430 WHILE ES<>"D™ AND ES<>"d”

440 E$=INKEY$: T=T+3

450 IF T>128 THEN T=T-128
460 WEND

470 FOR I=1 TO T

480 X=RND

490 NEXT I

500 PRINT : PRINT : PRINT : PRINT
510 RETURN

520 %

530 “***%* SINGLE DECK SHUFFLE
540 FOR I=1 TO 52
550 J=INT(RND*52)+1

560 IF I=J THEN 550
570 SWAP A(I), A(J)
580 NEXT I

590 RETURN

600 -

610 “**%** DEALL TWO FIVE CARD HANDS

620 L=0 : PRINT "PLAYER™S HAND";

630 PRINT TAB(30) "COMPUTER”S HAND"

640 PRINT

650 FOR I=1 TO 9 STEP 2

660 L=L+1

670 C$(L)="" : H$(L)=""

680 K1=A(I) : K4=A(I+l)

690 K2=K1 MOD 13 + 1 : K3=K1 MOD 4 +
700 K5=K4 MOD 13 + 1 : K6=K& MOD 4 + 1
710 C$(L)=CS(L)HV$ (K2)H0$+S$ (K3)

720 H$ (L)=H$ (L)+V$(K5)+0$+5$(K6)

730 PRINT C$(L);

740 PRINT TAB(30) H$(L)

750 NEXT I

760 RETURN

770 -

780 ikick DATA AREA

790 DATA "ACE ", "DEUCE", "THREE", "FOUR "
800 DATA "FIVE ", "SIX ", "SEVEN", "EIGHT"
810 DATA "NINE ", "TEN ", "JACK ", "QUEEN"
820 DATA "KING ", "HEARTS", "DIAMONDS"

830 DATA "SPADES", "CLUBS"

840 END

The routines of principal interest do the following:

1:Seed RND function (lines 270-310)
:Discard some random values (lines 430-490)
3:Shuffle the deck (lines 540-580)

The first two of these use BASIC-80's INKEY$ function to
test key

entry. The value of variable T continues to cycle until a
specified key (‘B’ for seed value and ‘D’ for new deal) is
pressed. CBASIC users may use the CONCHAR % func-
tion to the same effect. Note: In a fully implemented
simulation, a reasonable delay (perhaps to read a screen)
should be forced immediately before lines 260 and 340.
Thereafter, the time required to read the hands displayed
on the screen will provide enough delay.

Acceptable ranges for the variable T are dictated by lines
290 and 450. These values work quite well with the
BASIC-80 interpreter running on a 4Mhz Z-80 machine.
These lines may be adjusted as needed for other en-
vironments. One note of caution is in order; the BASIC-80
interpreter produces extremely long pseudo-random
series (I have tested beyond a million without repetition).
Other BASICs may require additional code to reseed the
random number generator if there is any reasonable
chance of exhausting the series during play.

In general, the most efficient simulations of single deck
shuffles share these common traits:

1: The deck is represented by a single numeric array.

2: The position of each card must change at least once.

3: The position of any card may change more, than
once.

Any computer shuffling technique must reorder an im-
aginary deck but this is not the only requirement. When
an actual deck is shuffled, any card might reappear in its
initial position. Some commonly used shuffling

algorithms mistakenly include checks which prevent this
possibility.

Imagine the cards in a standard deck occupying ‘positions’
1-52; (positions 1 and 52 are the top and bottom of the
deck respectively). One possible arrangement of the top-
most three cards might be:

1: SIX OF DIAMONDS
2: FOUR OF CLUBS
3: ACE OF CLUBS

A proper computer shuffle should reflect the one chance in
fifty two that the Six of Diamonds will return to position
1. A realistic card mix should also allow each of the top
three cards to be shuffled to their original order in posi-
tions 1-3. (This should happen only very rarely, the odds
against are more than 13000 to 1).

The algorithm in lines 540-580 is simple and satisfies the
requirements for a realistic shuffle. Users of BASICs
without the SWAP command may recode line 570 as
follows:
570 L=A() : A(D=A() : A(J)=L

In conclusion, I would suggest that any programs which
simulate random events using pseudo-random number
series will be improved by including code to discard a
time-related quantity of values from that series. You may
wish to enter the above program to verify its efficiency
(under 1 second at 4Mhz to shuffle and deal two hands).

CP/M SUMMARY GUIDE

Tired of fanning through your CP/M manuals or writing
notes that remind you of the commands, functions and
error codes? Well it’s about time you ordered our CPIM
Summary Guide! Spiral bound and Sioh e
handy to hold, our guide isa60 7
page booklet summarizing the
features of CP/M (Ver. 1.4 & 2.X)
and 2 totally alphabetical listings
of the commands, functions,
statements and error codes of
MICROSOFT_BASIC-80 Ver. 5.0
and CBASIC™ -2. Areas

| SUMMARY aume

summarized are in table form
and include all direct and
ONNSR T AN e

transient commands plus
MAC™ DESPOOL™ and
TEX™. ‘Our booklet is a much
needed supplement to any of ¥
the literature currently X
available on CP/M and has o
been recommended by Digital .{
Research.

P.S. Over 4000 users can’t be
wrong!

Ask your local computer store for our guide or send $6.95
plus $1.00 (postage and handling) to:

THE ROSETTA STONE, P.O. BOX 35, GLASTONBURY, CT
06025 (203/633-8490)

RO B S

Street

City State Zip
CP/M™, DESPOOL™, MAC™ are registered trademarks of Digital Research.
CBASIC™ is a registered trademark of Compiler Systems.

Lifelines, October, 1981

25

INTELLIGENT VIDEO 1I/0 FOR S-100 BUS

» LLLLLLLE
o . -~

i

SOw® was

VIO-X

The VIO-X Video 1/0O Interface for the
S-100 bus provides features equal to most
intelligent terminals both efficiently and
economically. It allows the use of standard
keyboards and CRT monitors in conjunc-
tion with existing hardware and software. It
will operate with no additional overhead in
S-100 systems regardless of processor or
system speed.

Through the use of the intel 8275 CRT
controller with an onboard 8085 processor
and 4k memory, the VIO-X interface oper-
ates independently of the host system and
communicates via two ports, thus elimi-
nating the need for host memory space.
The screen display rate is effectively 80,000
baud.

The VIO-X1 provides an 80 character by
25 line format (24 lines plus status line)
using a 5 X 7 character set in a 7 X 10 dot
matrix to display the full upper and lower
case ASCII alphanumeric 96 printable
character set (including true descenders)
with 32 special characters for escape and
control characters. An optional 2732
character generator is available which
allows an alternate 7 X 10 contiguous
graphics character set.

7,

FULCRUM 5 Distributed by:

COMPUTER PRODUCTS WW COMPONENT SUPPLY INC. 1771 JUNCTION AVENUE e

The VIO-X2 also offers an 80 character
by 25 line format but uses a 7 X 7 character
set in a 9 X 10 dot matrix allowing high-
resolution characters to be used. This
model also includes expanded firmware for
block mode editing and light pen location.
Contiguous graphics characters are not
supported.

Both models support a full set of control
characters and escape sequences, includ-
ing controls for video attributes, cursor
location and positioning, cursor toggle,
and scroll speed. An onboard Real Time
Clock (RTC) is displayed in the status line
and may be read or set from the host
system. A checksum test is performed on
power-up on the firmware EPROM.

Video attributes provided by the
8275 in the VIO-X include:

FLASH CHARACTER
INVERSE CHARACTER
UNDERLINE CHARACTER or
ALT. CHARACTER SET

DIM CHARACTER

The above functions may be toggled
together or separately.

The board may be addressed at any port
pair in the |IEEE 696 (S-100) host system.
Status and data ports may be swapped if
necessary. Inputs are provided for parallel
keyboard and for light pen as well as an
output for audio signalling. The interrupt
structure is completely compatible with
Digital Research’'s MP/M @

Additional features include:

e HIGH SPEED OPERATION

e PORT MAPPED IEEE S-100
INTERFACE

e FORWARD/REVERSE SCROLL or

e PROTECTED SCREEN FIELDS

e CONVERSATIONAL or BLOCK

MODE (opt)

INTERRUPT OPERATION

CUSTOM CHARACTER SET

CONTROL CHARACTERS

ESCAPE CHARACTER

COMMANDS

e INTELLIGENT TERMINAL
EMULATION

e TWO PAGE SCREEN MEMORY

VIO-X1-80X255X7TA&T $295.00
Conversational Mode
VIO-X2-80X257X7TA&T $345.00

Conversational & Block Modes

VIO-X S-100 /O INTERFACE

SAN JOSE, CA95112 e (408)295-7171

26 Lifelines, October, 1981

Volume 53

DESCRIPTION: BDS-C Users group ‘original’ Adventure disk. This is the ‘original’ Crowther/Woods adventure, con-
verted into BDS-C by Jay R. Jaeger, and updated for V 1.43 by L.C Calhoun. We thank Robert Ward, and the BDS-C

Users Group for this entire volume contribution.

NUMBER

53.1

53.2

53.3

53.4

53:5

53.6

53.7

53.8

53.9

53.10
53.11
53.12
5313
53.14
53.15
53.16
53517
53.18
53.19
53.20
53:21
53.22
53.23
53.24
53.25
53.26
53.27
53.28
53.29
53.30
53.31
53.32
53.33
53.34

SIZE

1K
5K
10K
5K
6K
18K
7K
7K
4K
6K
18K
1K
2K
7K
SK
1K
24K
1K
3K
2K
3K
4K
3K
1K
1K
1K
1K
1K
7K
2K
14K
10K
13K
8K

NAME

-CATALOG.053
ADVCOMP.SUB
ADVENT.C
ADVENT.COM
ADVENT.CRL
ADVENT.H
ADVENT1.DAT
ADVENT2.DAT
ADVENT3.DAT
ADVENT4.DAT
ADVENTS.DAT
ADVENT6.DAT
ADVLINK.SUB
CATALOG.DOC
DATABASE.C
DATABASE.CRL
EADVENT.C
EADVENT.COM
EADVENT.CRL
ENGLISH.C
ENGLISH.CRL
ENVIRON.DOC
ITVERB.C
ITVERB.CRL
MKADVENT.SUB
MKEADVEN.SUB
MKSAVEAD.SUB
READ.ME
SAVEADV.C
SAVEADV.COM
SAVEADV.CRL
TURN.C
TURN.CRL
VERB.C
VERB.CRL

CRCK.COM
CRCKLIST.CRC

COMMENTS

CONTENTS OF CP/M VOL. 053
These files are
fully explained
in“CATALOG.DOC”
and appear here
merely to get
“official numbers”.

Program to check CRC of each file.
List of CRC’s for all files.

If you suspect that your copy of this disk may be bad, run CRCK *.* and compare the CRC’s against the ones in
CRCLIST.CRC. If you want to create a new file, use CRCK *.* F but be aware it will overwrite CERCKLIST .ERE:

=
Lifelines, October, 1981 27

Volume 54 [][[J[101 1L CTEIE TR

Description: Xitan Disk Basic:
1. Games
2. CAI programs

Many of the games found here were contributed to the CPMUG by William P. Ruf of Kansas. The files were reviewed
and abstracted by Jim Kennedy of CACHE (the Chicago Area Computer Hobbyist Exchange), who also made some
corrections to some programs, or, in some cases, pointed out the known bugs in some of these programs for users to
de-bug. Jim also contributed his own ‘typing drill’ program, TDRILL.BAS. These programs are written (or modified)
for Xitan Disk Basic, but some will run under MBASIC without modification, and some require only slight modifica-
tion.

Jim Mills, CPMUG

reviewer

NUMBER SIZE NAME COMMENTS

CONTENTS OF CP/M VOL. 54.
Abstracts of programs.

-CATALOG.054
ABSTRACT.054

54.1 3K 1CHECK.BAS Solitaire checker puzzle.

54.2 2K ALFABET2.BAS Interactive alphabetizing,
de-bugged and expanded.

54.3 1K ALFABETI.BAS Original bugged version.

54.4 2K ARITH.BAS Simple addition and subtraction for
elementary students.

54.5 4K BIOCAL.BAS Biorythmic calendar (Bugs).

54.6 8K BLKJAC.BAS Blackjack (21) game.

54.7 3K BOMBER.BAS WW2 Bomber game.

54.8 2K BOUNCE.BAS Plots a bouncing ball.

54.9 7K BUG.BAS “Draw Bugs faster than your
computer’ game.

54.10 2K BULCOW.BAS Buggy program, number guessing game.

54.11 7K BUNNY.BAS Draws a “bunny” on your CRT.

54.12 3K BUZZWD.BAS Selects a list of “buzzwords”.

54.13 4K CHASE.BAS High Voltage survival game.

54.14 6K CHASE2.BAS Not related to above game.
Construct and maneuver in a maze.

54.15 3K CHOMP.BAS Eat pieces of a cookie,
last piece loses (NIM?).

54.16 3K CRAPS.BAS Standard Nevada table rules.

54.17 5K CUBE.BAS Get thru the cube & win a bet.

54.18 3K DEFUSE.BAS Find and defuse the bomb before...

54.19 1K DIAMND.BAS Fills screen with diamond shapes
that spell DEC.

54.20 3K DRAW.BAS Buggy program -- see abstract.

54.21 2K DRINKS.BAS “How to mix drinks”, see abstract.

54.22 3K FISHING.BAS Catch fish in a lake, avoid hazards,
a mini-adventure game.

54.23 9K FOOTBL.BAS Standard professional rules,
except no penalties.

54.24 2K FRACT.BAS Fraction mathematics.

54.25 1K GRAFIT.BAS Some kind of student plotting program.

54.26 2K GUNNER.BAS Fire a field artillery weapon, bugs.

54.27 6K HOCKEY.BAS For hockey fans.

54.28 4K HORSES.BAS Place your bets on the horse races.

28 Lifelines, October, 1981

CRCK.COM
CRCKLIST.054

CRC filecheck program.
List of CRC's of files.

Abstracts

V/N/N/NA

Volume 53

CPMUG is not providing abstracts for
this disk; the description with the
catalogue should be sufficient.

Volume 54

This volume contains programs in-
tended to be used with TDL-XITAN
DISK BASIC. Many of these pro-
grams are modified versions of public
domain programs which have been
distributed by DECUS, the DIGITAL
EQUIPMENT COMPUTER USERS
SOCIETY. DECUS requires programs
submitted to it for distribution be in
the public domain. Many of these pro-
grams were originally written by high
school students and other individuals
who wrote them and submitted them
to a users group so that they could be
shared with others.

Back in 1971, a gentleman who work-
ed for DIGITAL, helped in a project
to collect donated programs, and
published them in a book called 101
BASIC COMPUTER GAMES. His
name is David H. Ahl. Mr. Ahl left
DEC in 1974, and asked for the rights
to print the book independently. They
agreed as long as the name was chang-
ed. He revised many of the programs,
added some, removed some, and
published a book he called BASIC
COMPUTER GAMES,
MICROCOMPUTER EDITION. He
copyrighted the book. Meanwhile,
DEC gave the original programs to
DECUS, who distributed them on
DECtape and Magtape to the com-
puter community, essentially putting
them in the public domain. It is this
group of programs, (and NOT the
revisions copyrighted by Creative
Computing) that have been translated
into TDL-XITAN BASIC and submit-
ted to CPMUG for this set of disks.
Many of these programs were receiv-
ed by The CP/M Users Group in
XITAN internal code. They have been
translated back into ASCII for
distribution, so it is possible that some
of them will work on other BASICS,
such as Microsoft BASIC. However,

they have been checked out only with
TDL-XITAN Disk BASIC for these
abstracts. Some of these programs do
have bugs, some of which are noted in
these abstracts. The bugged programs
are included so that some CP/M users
who like challenges will have the op-
portunity to try their skills on finding
and correcting these bugs.

Jim Kennedy

Editor’s Note: The actual abstracts for
this volume are somewhat more
detailed than the descriptions below.
But we think these outlines will give
you a good overview of the games on
this volume.

1CHECK.BAS

Solitaire checker puzzle by David
Ahl, p. 163-164 of 101 BASIC Com-
puter Games (published by Digital
Equipment Corporation). Works fine,
but it would be nice if the number grid
were repeated at each move.

ALFABETI.BAS

Author unknown. A nice little in-
teractive alphabetizing program,
which works OK on the first run, but
hangs up with a Re-Dimensioned ar-
ray @ line 70 error when you try to
enter a second list of items. SEE
ALFABET2.BAS.

ALFABET2.BAS

This is the ALFABETI.BAS program
revised by Jim Kennedy, to correct
problems in the original, and give the
user more detailed instructions. The
program interactively accepts a list of
words, names, etc., and prints an
alphabetized list. Note: use all caps or
all small letters in your items. Other-
wise, items in caps will be listed before
lower-case items in the alphabetized
list.

ARITH.BAS

Presents simple addition problems.
You give the answer, it tells you if you
are right or wrong. If wrong, you get
to try a second time. If still wrong,
you are given the answer and then
given a new problem. Good for
elementary students for drill and prac-
tice in addition, and as an illustration
of some CAI programming techni-
ques.

BIOCAL.BAS
Biorhythmic calendar. Will NOT run
on my XITAN BASIC. % after end

numbers is OK on some Microsoft
and Digital BASICs, but not on
XITAN. Also, I think there should be
more code after line 1430. Perhaps so-
meone can find the source of this pro-
gram and fix it up.

BLKJAC.BAS

P. 39-41 of 101 BASIC Computer
Games. This version of Blackjack is
the one written and modified by
DIGITAL personnel, originally for
RSTS-11. It runs well on XITAN
DISK BASIC. It is very comprehen-
sive and fun to play. (It takes a long
time to load as an ASCII file.)

BOMBER.BAS

P. 45-46 in 101 BASIC Computer
Games. Originally written by David
Sherman of Curtis Junior High
School, Sudbury, MA., and later
modified by DIGITAL personnel. It
has been since additionally modified
to run on XITAN BASIC. You can
make some decisions, but your fate is
largely up to the random number
generator. It runs well, and was ex-
citing for the children in the family for
the first few times they ran it.

BOUNCE.BAS

This program plots a bouncing ball.
Written by Val Skalabrin, and found
on P. 47 of 101 BASIC Computer
Games. The program takes a long
time to print out if you choose figures
requiring a tall plot. Try .1 sec, 25 FPS
velocity and a coefficient of .9 to
start. These figures will keep the plot
on a 25 line TDL-VDB screen.

BUG.BAS

P. 52-54 of 101 BASIC Computer
Games. The object of this game is to
finish your drawing of a bug before
the computer finishes its drawing.
Written in the early 70s by a 7th grade
student, Brian Leibowitz. The com-
puter rolls the dice each turn and the
operator needs only to type yes (or
return) or no to the question concern-
ing the bug pictures.

BULCOW.BAS

P. 55-56 of 101 BASIC Computer
Games. This program does NOT
work properly in XITAN BASIC.

BUNNY.BAS

By Goodyear Atomic Co., Piketon,
Ohio. Submitted to DECUS 30 July
1973. This program sends a picture of
a bunny head to the printer. It has ob-
viously been re-written for XITAN

=
Lifelines, October, 1981 29

DISK BASIC, and it works well.

BUZZWD.BAS

P. 63-64 of 101 BASIC Computer
Games. Written by Tom Kloos of the
Oregon Museum of Science and In-
dustry. It prepares sets of
“buzzwords” by selecting words from
3 lists and putting them together.
Runs OK.

CHASE.BAS

“You are within the walls of a high
voltage maze—your only chance for
survival is to maneuver each in-
tercepter into a high voltage area.”

CHASE2.BAS

This is a chase program written by
Michael P. Ruf on 12/16/78. It asks
the player for the width, the length,
and the density of a maze. It then tries
to construct a maze (which comes out
on my screen as a column of
symbols), and then asks for players’
moves— to be entered as numbers.
Try this program on your system...it
may work with your terminal con-
figuration.

CHOMP.BAS

P. 78-79 of 101 BASIC Computer
Games. Submitted to DIGITAL by
Peter Sessions of People’'s Computer
Company, based on the game of
CHOMP (Scientific American, Jan.
1973).

CRAPS.BAS

P. 83-84 of 101 BASIC Computer
Games. Modified to work on XITAN
BASIC. Original author unknown.
his version is based on the standard
Nevada craps table rules. Fun to play.

CUBE.BAS

P. 85-86 of 101 BASIC Computer
Games. Written by Jerimac Ratliff of
Ft. Worth, Texas, and converted to
RSTS/E by David Ahl. You progress
along a cube from coordinate 1,1,1 to
3,3,3. You may be zapped by a land
mine along the way, but if you make it
you win a wager you made when you
started and are richer. You have a
chance of quitting and keeping your
winnings, or wagering all or part of
your money on your next trip. This
game is good for teaching the meaning
of a 3 dimension coordinate system to
youngsters.

DRAW.BAS1

I CAN'T LOAD THIS ONE WITH
30 Lifelines, October, 1981

XITAN BASIC. I GET A MISSING

STATEMENT NUMBER ERROR.
DEFUSE.BAS
Written by Tom Karzes, Curtis Jr.

High School, Sudbury MA. and
modified by Dave Ahl, DIGITAL.
(NOT in 101 BASIC Computer
Games). You are in a large building,
100 rooms long, 100 rooms wide, and
100 rooms high and are looking for a
bomb. You have a bomb strength
meter to guide you to the bomb before
it goes off. Everytime I played the
game [got blown up.

DIAMOND.BAS

P. 87-88 of 101 BASIC Computer
Games. Fills the screen (or an 8 %2 X 11
piece of paper if you change some
print statements to PRINT#2,) with
diamond shapes each containing the
letters DEC!!! You can control the size
of the diamond shapes. This sort of
program could easily be modified to
produce other patterns.

DRINKS.BAS

“This program prepares drink recipes
guaranteed to make your next party a
‘smashing’ success.” The program
runs as is, and would be fun to show
off at a party—but don't let anybody
take it seriously.

FISHING.BAS

You are at a dock at the northwest
corner of a square 8X8 unit lake. You
are to move your boat through the
lake and return to the dock with your
catch by responding to the move ques-
tion with a compass direction
N,S,E,W, or F for staying in a Fixed
position. If you type B, the game will
begin again. You must return to the
dock within 6 (computer) hours or
half your catch will spoil. If you hit
the shore of the lake, you will be
grounded and sunk. There are other
hazzards to make the game exciting.

FOOTBL.BAS

P. 101-103 in 101 BASIC Computer
Games. This simulation of the game
of football uses standard professional
rules except that there are no
penalties. This game is fun to play
once you have memorized the
numbers representing the different

plays.

FRACT.BAS

Author: Michael Ruf. Written August
29, 1979. This seems to be a well writ-
ten program dealing with fraction end

math. However, it uses a WAIT state-
ment that causes my system to hang
up. It may work with a serial terminal
accessing the correct port(s), or
perhaps someone familiar with the
WAIT command could modify it for
his system.

GRAFIT.BAS
It runs, but I don't know its use—any
ideas?

GUNNER.BAS

Written by Tom Kloss of the Oregon
Museum of Science and Industry, and
modified by David Ahl, DIGITAL.
“This computer demonstration
stimulates the results of firing a field
artillery weapon.” The game works as
a game, but the formula must be
wrong for computing the trajectory,
because some results are not realistic.

HOCKEY.BAS

P. 130-132 in 101 BASIC Computer
Games. Written by Charles Buttrey of
Eaglebrook School, Deerfield, MA.
and submitted to DIGITAL by Mrs.
Kingsley Norris. Converted from
Brand X to DIGITAL RSTS/E by
David Ahl. ‘Instructions are easier
than those of the football game, but
the play does not seem as in-
teresting—unless you are a real
hockey fan.

HORSES.BAS

P. 133-134 of 101 BASIC Computer
Games. Author unknown. From
DIGITAL. You are given the odds for
each horse and you place your bets for
win, place or show. After the race had
been run, you are told your winnings
(or losses) and invited to press your
luck further.

INTEREST.BAS

A simple program to calculate simple
and compound interest over a 10 year
period. Works fine. Author unknown.

KING.BAS

P. 138-140 of 101 BASIC Computer
Games. Author: James A. Storer, Lex-
ington High School, modified by
Dave Ahl, DEC. Available from
DECUS, where it is called “Pollution
Game”. One of the more comprehen-
sive, difficult and interesting land and
resource management games. It runs
fine on XITAN BASIC and is a lot of
fun to play. This copy often ter-
minates play after 1 year, but that is
probably because I am not a very

good King. (Or the program could
have a small bug).

LITQZ.BAS

P. 150 in 101 BASIC Computer
Games. A simple CAI type program
which presents four multiple choice
questions from children’s literature
—illustrates simple CAI techniques in
BASIC. Questions could be changed
and program expanded for other in-
structional objectives.

MATH.BAS

Author not known. Program won't
run on my XITAN system with its
TDL VDB board. The WAIT at line
504 hangs it up. Perhaps the program
would work with a system having a
serial terminal using ports 72 and 73.

MUGWMP.BAS

P. 156-157 in 101 BASIC Computer
Games. Originally written by the
students of Bud Valente of Project
SOLO at the University of Pittsburgh,
this program was slightly modified by
Bob Albrecht of People’s Computer
Company and converted to DEC's
RSTS/E by David Ahl when he work-
ed for Digital. The object of the game
is to locate four mugwmps hiding on
various squares of a 10 x 10 grid.
Good practice in triangulation
techniques.

PICTUR.BAS

Not in 101 BASIC Computer Games,
but I have seen it in the DECUS
library. It asks for your name and
where you want your picture. You
can have it displayed on the terminal
by typing KB: or on the printer by
typing LP: The program shows a
technique for switching output from
the video screen to the printer without
having to re-write or edit your print
statements.

POET.BAS

P. 171 of 101 BASIC Computer
Games. Original author unknown.
Modified and reworked by Jim Bailey,
Peggy Ewing, and Dave Ahl of
DIGITAL. This program produces
random verse made of phrases sug-
gestive of Edgar Allen Poe.

POKER.BAS

P. 172-174 in 101 BASIC Computer
Games. Written by A. Christopher
Hall, submitted to DECUS by A. E.
Sapega. You play draw poker with the
computer as your opponent.

PRIME.BAS

“This program prints the prime
numbers from 1 to 10,000” (if you can
wait that long).

QUBIC.BAS

P. 175-177 Original author
unknown.Was on a GE timesharing
system in 1968. Now in DECUS
library. Qubic is the game of tic tac
toe in a 4X4X4 cube. Considerably
more difficult than standard two
dimensional tic tac toe. This version
has been improved over the one in 101
BASIC Computer Games by the addi-
tion of a provision to display the

board on command. Be patientcthe

computer sometimes takes many
seconds to determine its move.

REVRSE.BAS

P. 180-181 in 101 BASIC Computer
Games. Written by Bob Albrecht,
People’s Computer Co. The game re-
quires you to arrange a list of
numbers in numerical order from left
to right by reversing numbers.

ROCKET.BAS

P. 184 of 101 BASIC Computer
Games. Written by Jim Storer, Lex-
ington H.S. Converted from Focal to
EDUSYSTEM 30 BASIC by David
Ahl, DIGITAL. This version has been
considerably further modified to
work with XITAN BASIC. Fun to
play, but the Ib. fuel remaining in-
dicator seems to be set too high, caus-
ing you to run out of fuel and crash
when you think you have enough fuel
to make it.

ROCKT1.BAS

P. 185 in 101 BASIC Computer
Games. Written by Eric Peters of
DIGITAL. One of many variations of
the lunar lander idea. This one plots a
graph of your descent.

SNOOPY.BAS

This “SNOOPY"” allows you to enter
your name, and it then prints the
Snoopy and puts your name under it.

SPORTS.BAS

Simple CAI program to give you
multiple choice questions on sports. If
you guess the right answer, you are
congratulated. If you guess wrong,
you are given the right answer.

STARS.BAS
By Bob Albrecht of People’s Com-
puter Co. A number guessing game.

STOCK.BAS

P. 209-211 in 101 BASIC Computer
Games. A stock market simulation
game revised 8/18/70 by D. Pessel, L.
Braun, and C. Losik, Huntington
Computer Project, SUNY. Lets you
lose money on the stock market
without having to pay out any
money —other than the small fortune
you spend in upgrading and maintain-
ing your micro.

TAKEAWAY.BAS

By Michael Ruf and Rick Mack. The
game seems to be well written, but
some of the coding, probably intend-
ed to do something with an intelligent
terminal, gives confusing output on
my TDL-VDB. The game has several
players alternately taking away
asterisks from an asterisk collection...
something like the game of CHOMP.

TDRILL.BAS

Author: Jim Kennedy. Date written:
July 14, 1981 This is a simple typing
drill program designed to give a begin-
ning typist extra drill and practice.
Rather than generate the letters and
words with a random letter generator,
as is done in some other typing drill
programs, this one uses data lists to
supply the letter groups. This gives
more control over which letters are
used in the early lessons when only a
few keys have been introduced. The
student may correct a mistake by
backspacing if it is noticed before the
CR has been hit, and the mistake is
not noted. However, if a line is not
perfect when the CR is hit, the student
will be told so, and will be asked to try
again. At the end of each 12 line drill
(6 lines X 2), the student will be told
how many lines were typed to get the
dozen correct. Another drill can then
be picked, or the student can ter-
minate the program, and receive a
count of the number of lines right and
the total number typed. This program
will be used in the future with a dif-
ferent data list to continue this lesson
series, starting with lesson 13.

TENNIS.BAS
A Mult. choice quiz on tennis, with a
question technique similar to

SPORTS.BAS.

TEXT.BAS :

An introductory information pro-
gram about some of these (and other)
programs. =

Lifelines, October, 1981

31

TICTAC.BAS
This is an expanded tic tac toe game
played on a 9 X 9 grid. You enter your
moves as grid coordinates and the
computer (often “thinking” for over a
minute) prints the position of your
move and its move. You have to get 5
across, down, or diagonal to win. For
those with the patience to wait be-
tween moves, this game could be an
enjoyable challenge. It is also good for
grid coordinate practice.

TRAP.BAS

P. 224-225 in 101 BASIC Computer
Games. Written by Steve Ullman, and
modified by Bob Albrecht of People’s
Computer Company. Another “guess
the mystery number” game.

TTTOE.BAS

Tic Tac Toe game. Usually plays well,
but periodically gives error message:
Subscript out of range on line 84,
usually when no one is going to win.
This one too, may benefit from some
user de-bugging and feedback.

TVPLOT.BAS

Originally = written in FOCAL by

Mary Cole and converted to BASIC-
PLUS by Dave Ahl. This program
produces various funny TV plots.
Good for a laugh or two.

TYPING.BAS

Author not mentioned, but it could
have been written by Michael Ruf. It
uses the WAIT on line 80 that hangs
up my system. It may work with a
serial terminal that uses ports
72(status) and 73. It is intended as a
typing drill program, with the
character strings generated by a ran-
dom generator. Rather than correct
this program, I wrote my own typing
drill program. (see TDRILL.BAS).

WEKDAY.BAS

P. 234-235 in 101 BASIC Computer
Games. Adapted from a GE timeshar-
ing program by Tom Kloos of the
Oregon Museum of Ccience and In-
dustry and further modified for
XITAN Disk Basic.

WISHES.BAS

A silly wish poem writing program. It
is in a nice conversational tone for
primary school children. This pro-
gram has good possibilities for expan-
sion into something interesting for
slightly older children.

32 Lifelines, October, 1981

Ordering From
CPMUG

CP/M Users Group library diskettes
are available from The CP/M Users
Group, 1651 Third Avenue, New
York, New York 10028. As of this
date, the Library contains 54 volumes
of software available on 8” IBM
single-density CP/M diskettes, or on
North Star diskettes readable by users
of double-density CP/M 1.4, double-
density CP/M 2.2, quad capacity
CP/M 2.2.

The complete CPMUG catalogue is
available for $6 prepaid to the U.S.,
Canada and Mexico. The cost to all
other countries is $11 prepaid.
Members receiving the material are
reminded that software contributions
are necessary if the exchange program
is to prosper. Software contributions
are gladly received for inclusion into
the Library with the understanding
that the contributor is authorized to
make the material available to others
for their individual non-commercial
use.

Please write for more information to

CPMUG at the address above.

A Report On CP/M
2.25A For The
TRS-80 Model II

The ADM-31 screen emulator does
not implement the print screen func-
tion (1B, 50 Hex). This function would
output the screen data to the AMX or
printer port of the terminal. Since this
auxiliary connector is not present
there is no code to address it. The
Control P function of the CP/M is
normally used to echo console data to
the list device.

In this version certain video handling
features are implemented. The screen
driver in this CP/M is designed to
emulate two standard terminals, the
ADM-3A and also, with few excep-
tions, the ADM-31 of the Data Pro-
ducts Division of Lear Siegler, Inc.
The ADM-3A is supplied because
many software products are delivered
pre-configured for this popular
screen. The ADM-31 has many more

| features, and if an application is to be
 configured for use with this CP/M

version, the codes for this screen are
preferable. The two terminals have
very different commands, and so the
two emulations have been made co-
resident without their interfering with
one another.

The following table shows screen
command codes supported for the
ADM-31:

FPédn<é'ti'o WO Dielcimral FFex
Line Feed 10 0A
Reverse Line Feed 11 0B
Non-destructive For-

ward Space 12 o€
Carriage Return 132E PO
Erase to End of Line 28GRy
Clear Screen 26 1A
Home Cursor 30°24R

The following command codes must
be preceded by an escape character,
ESC> , hex value 1B:

Fun'ctio’n- Decimad’P FBeé*
Clear Screen 58 3A
Set Inverse Video A 1.6 S0

Reset Inverse Video 40 28
Erase to End of Screen 121 79
Erase to End of Line 84 54

Insert Line 69 5
Delete Line B82% 52
Insert Character 81 51
Delete Character 87 * #5)
Position Cursor 61 3D

Print Graphics

new products new products r

new products new produ

new products new

new products nev

Apartment Management System
by Cornwall Computer Systems,
Inc.

This system is intended to make
available management reports pro-
viding status information on different
aspects of apartment house manage-
ment. It records payments from
tenants and charges to tenants for
amounts due, prints form letters with
or without labels, and can accom-
modate one or more apartment house
complexes with varying numbers of
units in each.

Four data files are used for each apart-
ment house. A master file contains in-
formation on the whole project and
only changes when an apartment is
vacant or a new tenant rents. A tenant
payment history file maintains infor-
mation on tenants’ payments and
allows space for 24 months for each
tenant. Financial totals are kept in a
year-to-date financial history file
which precedes each month'’s totals
with twelve previous months’ records.
Finally, a fourth file maintains infor-
mation on former tenants.

Reports can be generated on screen or
from the printer, in single or multiple
copies. They include: past due and
due rents to date, a list of vacant
apartments, a list of tenants with
leases expiring each month, a list of
tenants without signed leases at the
end of the month, a list of tenants on
dispossess at the end of the month,
maintenance data on the condition of
each apartment, a report on all
amounts due at the end of each month
in an entire project, a tenant payment
history file by project or individual, a
former tenant file, status report on all
apartments, total financial history for
a year listed by month for a whole
project, bank deposit reports.

Apartment Management requires two
250K drives, a printer, and 48K of
available memory.

GLector IV
by Micro-Ap Information Manage-
ment Systems

This is a small business-oriented
general ledger option for Selector IV,
designed for use by non-accounting
personnel. The operator employs a set
of user-defined transaction codes
which are interpreted by GLector IV;
then the appropriate accounts are
debited or credited. Trial balances are
performed when transactions are
entered or updated, and single offset
accounts are automatically entered.
This general ledger option has a
24-month data storage ability.

GLector IV generates a Balance Sheet
for any month, containing current
and last year’s balances. It will create
a P and L afor any period of the cur-
rent fiscal year showing last year's
period, percentage of sales, year-to-
date, and percentage change for the
period.

GLector IV requires Selector IV and is
priced at $450.

Microcache
by Microcosm

This RAM memory extension is con-
trolled by software, which uses the ex-
tra RAM as an intelligent buffer be-
tween disk drives and normal
memory. Disk records required most
often by an application are
automatically stored in the
Microcache buffer and can be
transferred at high speed into user
memory. A maximum of 256K bytes
of memory can be added. It features
selective record lock-in and selective
disk lock-out and has an autoload
facility.

It requires a CP/M or Apple II (with
Apple DOS) machine, a Z80 pro-
cessor; if Cis used, it must be version
2.0 or later (or MP/M or CP/NET).

PANEL
by Roundhill Computer Systems
Ltd.

This screen panel design aid is for use
with PL/1-80 and CP/M or MP/M. It
permits the setting up and modifica-
tion of screen designs at a terminal
and then generates PL/1-80 statements

which permit application progra.
write to and read from the screen.

PANEL supports multiple- and single-
line fields; character and line insert,
reverse video, delete within fields,
and full cursor movement are conven-
ience features for the end user targeted
by the application program. The
screen editor allows the design of help
screens, menus, and data entry
screens. Sample screen layouts can be
generated to aid in the programmer’s
application system documentation.

PANEL requires-a 44K TPA,
LINK-80, and a 24 by 80 terminal with
cursor addressing. It can generate
designs for smaller terminals.

The Programmer’s Apprentice
by The Software Group

This is a program development tool
for CP/M based microcomputer
systems. The Apprentice is intended
for use by beginners and more ad-
vanced programmers. It uses a macro-
like language to define standard
routine which its code generator
utilizes to create MBASIC source code
programs. It is designed to create
debugged programs in MBASIC for
screen prompted data input, data base
management, file maintenance and
report generation.

A screen editor permits the user to
create a report template on screen.
Definitions modules allow each file’s
attributes to be defined exactly.

Apprentice is 8080/Z80 compatible,
requires 56K of RAM, 256K of floppy
or hard disk storage, serial cursor ad-
dressable CRT display terminal, and
Microsoft’s BASIC-80 compiler.

Silicon Disk System
by Microcosm

This product convinces. CP/M that
additional standard RAM Memory
(up to 8MB's) is really a disk drive.
Thus, the user can access this ‘drive’ as
if it was a real disk drive, but much
faster.

The Silicon Disk System is designed
for implementation with databases,
business packages, sorts, and other
packages. It is intended to make the

=2
Lifelines, October, 198 &

segmentation and overlaying of large
programs practical, and to permit the
handling of large data arrays. In addi-
tion, the manufacturer recommends it
for use as a speed buffer for printer
spooling, communication, machine
control systems, graphics, etc. It
features built-in memory diagnostics,
the possibility of re-assigning logical
to physical disk drive letters, Z80
code, autoload and autostart facility.

New Publications

File Processing With COBOL
by Donald H. Beil

This book is designed to aid in solving
business applications problems using
structured COBOL; it describes
techniques for file creation, merging,
sorting, reporting, and updating se-
quential files. Further instructions are
given on updating files and records
and effective ways of setting up these
processes.

How to Copyright Computer
Software
bySofprotex

This is a government publication writ-
ten in order to clear up confusion
about copyright protection for soft-
ware. It explains some recent rulings
on patents and other government ac-
tivities and regulations pertinent to
software development.

new versions new versions ne

—

new versions new versior
Be————

new versions new v
_

New versions new

CBASIC
Version 2.8

These additions and bug fixes are in-
cluded in this update:

1-CRUN2 has a new error message,
AE; it indicates that an array element
was referenced prior to executing a
DIM statement for that array.

2-The compiler prints messages when

4 Lifelines, October, 1981
n

a reference to a function is en-
countered prior to the function being
defined. The message provides the
name of the function in question.
3-The compiler no longer hangs when
a WHILE statement with an invalid or
missing expression is detected.
4-XREF now processes more than 255
variables. Previously it hung and
would not reboot when more than 255
variables were encountered.

CIS COBOL
Version 4.4

This new update includes im-
provements to the compiler and run
time system. {

Compile time command line option
can now be selected by the user when
loading the compiler. GSA flags can
optionally be set at any level and
reports will be included in the listing
file for features higher than the
selected level. ANSI-required source
lines can be omitted without detri-
ment, unless the FLAG directive is in-
cluded to specify ANSI COBOL.

Segments can now be compiled in any
order. It is no longer necessary for
permanent segments to precede in-
dependent ones.

An option parameter ? has been added
to the Run-Time Command line; it
can be included after the RUN com-
mand and before the optional direc-
tive parameters that can precede the
file name. By default there is a com-
patibility check between the run-time
system and the intermediate code
(generated by the compiler) being
loaded. The ? parameter inhibits this
version check. If the check detects in-
compatibility, the run is ended with
the display of error message 165.

It is generally safe to inhibit the check
when Version 4.3 intermediate code is
to be run. If unexpected run-time er-
rors result, ascertain that they are not
caused by incompatibility or the in-
clusion of other than 4.3 or 4.4 code.

Users with MP/M Version 1 may ex-
perience difficulty at Compile/Run
time, a FATAL I/O error may occur
depending on the release of MP/M.
The following patch to CIS COBOL
run time system and compiler will
negate this problem:

DDT RUNA.COM
DDT VERS N.N
NEXT PC

8900 0100
~S322F
322F OE
3230 0OC 00

SZ80=CD- 21

3232 A4 21

3233 42 01

3234 23. .

-GO

A>SAVE 136 RUNA.COM

00

DDT COBOL.COM
DDT VERS N.N
NEXT PC

8900 0100
-52148

2148 OE 00
2149 0OC 00
214A CD 21
214B BD 21
214C 31 01
214D 23 .

-GO

A>SAVE 136 COBOL.COM

Pascal/Z
Version 4.0

This version includes a new feature
called SWAT (Software Analysis
Tool), an interactive symbolic Pascal
debugger; overlay capabilities have
also been added. The assembler and
linker now can accept up to eight
significant characters.

(] 1) L

N g A A N g g g g

CICTT DL
PO LI

PDDDDMELE TLLEE

)DDIPIICLEC TCLI
WAWWWWWW

A number of people would like to know how to total a row of figures and then use that total to compute each row as a % of
that total.

Here is a T/MAKER mask which does it easily.
Note the following features:
1. “="is at the top of the column
2. ‘Store and Fetch’ is used
3. ‘Compute C’ is used (Double Compute)
Try it It works, and Oh, so simple. (Or you can read page 54 in the manual.)
compute c clean

Example of Double compute to allow total of a column

to be used as a constant in the further calculation of clean

that column This illustrates how the mask looks after “COMPUTE C”
ex 99,999 5,555, 999.99 ex 99,999 ,,,,,,:999.99
zZv zZv

jei stA jel stA

STATES CENSUS PERCENT STATES CENSUS PERCENT

= = 1,727 100.00
ac2 ftA ac2 ftA

ac3 . / % ac3 4= / %
+ NY 575 + NY 575 33.29
+ MASS 422 -+ MASS 422 24 .44
+ CONN 334 - CONN 334 19.34
H NH 229 + NH 229 13.26
L VT 167 + VT 167 9.67

Figure 1 Figure 2

This illustrates how the table looks after “CLEAN"

STATES CENSUS PERCENT

15,727 100.00
NY 57> 33.29
MASS 422 24.44
CONN 334 19.34
NH 229 13.26
VT 167 9.67

Figure 3

Lifelines, October, 1981 35

JIffSSfffSTips and TechniquesS[fffffffJ

Michael J. Karas has sent us a useful
tip on speeding up multiple PIP sub-
mit files:

“A very common usage of the CP/M
SUBMIT utility is to make a new
system diskette containing just the

1. With your “everything” disk in

Drive A:, type the command:
A»SAVE 0 @.COMc«cr»

This forms a zero length file that

when “loaded” by the CP/M CCP

causes the previously loaded tran-

sient program to be executed over

“How many times have you tried to
execute PIP after you have changed
diskettes? Here is the solution.

Patch the program with these pro-
grams:

files that you need to get started on again. BUFF EQU 1ECBH
that new software project. Typically 2. Retype the above typical system ORG 110H
you would start with an existing copy submit file like this:
system diskette in Drive A: that had New format: EXTRA LD HL,BUFF+1
“everything” on it. A submit file of the PIP B:=A:ED.COM[V] LD Al
following format is used to move the @B:=A:FORMAT.COM|V] CP=<(HL)
necessary files over to a freshly “for- @B:=A:STAT.COM[V] RET NZ
matted” and “sysgened” diskette in etc... INC HL
Drive B:. (The name of the submit file @R S(EI)
is arbitrary but could be Now PIP.COM is loaded only once RET Nz
‘COPYSYS.SUB'.) for the entire submit file execution. If EEC T HE S53CEH]
the files being placed on to the new EX. - (SBLET

Typical format: system diskette in Drive B: are all CALL 82EH

PIP B:=A:ED.COM[V] about 8K to 12K bytes in size, then PR A E13

PIP B: =A:FORMAT.COM[V] you may expect an appropriate execu- JP *5

PIP B:=A:STAT.COM[V] tion performance factor improvement
and so on... of 15 to 20%. If all files are very long ORG 96FH

(25 to 30K), then the speed gain would LD ~HL,BUFF

Each time the submit file reenters be minimal. The concept works well LD (HL),128
CP/M for the next command line the for the system disk process due to the EX DEHL
PIP utility program is reloaded to per- fact that most of the system files being LD C,10
form the next file copy operation. copied tend to be quite short but very CALLS5
Since the PIP.COM obiject file is 8K numerous.” JP EXTRA

bytes, a considerable amount of time
is spent just reading the PIP file back
in each time. If you would like to see
this operation execute a little faster try
the following stunt:

Here is another tip sent to us by Len-
nart Svensson:

After patching you key in fA and
nothing else; the disk drives are reset.”

New Address: Old Address:
Changeof. ‘=
Ad dre S S COMPANY COMPANY

Please notify us immediately if you
move. Use the form below. In the STREET ADDRESS STREET ADDRESS
section marked “Old Address”, affix
your Lifelines mailing label—or
write out your old address exactly as cmy STATE CITY STATE
it appears on your label. This will
help the Lifelines Circulation De-
partment to expedite your request. ZIP CODE ZIP CODE

SISSSSSS SIS SIS IS SIS IS5 5458

36 Lifelines, October, 1981

bugsbugsbugsbugsbugsbug
ugsbugsbugsbugsbugs

bugsbugsbugsbugs
==
bugsbugsbugsbu

DataStar
Version 1.101

Formlist does not print exclamation
points—it also doesn’t finish with a
crlf.

WordStar
For the Apple

This version in a 44K system cannot
handle a block larger than 20
characters.

WordStar
Version 2.26P (ETX/ACK)

Port driver values for this version

should be:
For CCS For Altos
DATA.: 0e09f le
STATUS: 0e09e 1f
XMIT : 01 04
REC: 02 01
S-BASIC
Version 5.4

These bugs have been reported in
this version of SBASIC:

1-The EXP function may return an
inaccurate result for increasingly
large arguments.

2-AAX-Thisis inaccurate if X> 32767.
X is separated into its integer part
and its fraction part. The integer part
is stored in a word INTEGER.
3-DIM-Array names are limited to
32 characters.

4-VAR-Local variables between
BEGIN and END statements may
change value at run-time. This is be-
cause the compiler allocates local
variables from different blocks onto
the same memory to save space.
There is a bug in the compiler caus-
ing misalignment of the variables.

5-CLOSE-When closing a sequential
file, CLOSE may lose track of the
channel number. Causes a run-time
error message.
6-VAR/COM/BASED-As names are
entered they are fed into a tempo-
rary buffer. The length of this buffer
is 128 characters. Therefore the sum
of the characters of all the namesina
given VAR/COM/BASED may not
exceed 128.

6-ON ERROR-ON ERROR OFF gen-
erates a syntax error. Zero the fol-
lowing byte in S-BASIC.COM. The
byte to nop out is 992H, it was a 09;
change it to a 00. This can be done
with the “S” command of DDT.
7-SERIAL FILES-Once a serial file
channel (either ASCII or binary) is
used for a read or write operation,
that channel becomes a read or write
only channel. The first operation
sets the channel to read only or write
only operation. OPEN and CLOSE
will not reset this status.

MMU
Announced

Lifeboat Associates has announced
the forthcoming release of a series of
MMU peripheral boards for Z80
based microcomputers. The MMU is
designed to permit almost any host
system based upon a Z80 processor
to operate SB-80™ and other CP/M
compatible operating systems. This
added facility is offered without al-
tering the capability of the host sys-
tem to use its own original native
software as and when needed. The
MMU will provide, under software
control, the correct environment to
support these popular disk operat-
ing systems. This environment con-
sists of the required memory alloca-
tion and a suitable handling to re-
spond to Non-Maskable Interrupts.

The unit is available optionally with
16K bytes of memory which can be
used to supplement the machine’s
existing memory. The unit is desig-
ned to map the host system memory
and its own optional memory in
order to create the desired architec-
ture for the disk operating system.

The installation of the MMU in most
systems is a simple plug-in addition
to the host machine without any sol-
dering or tampering with the circuit
board required.

The unit is intended initially as an
OEM device for manufacturers of
microcomputers. Lifeboat As-
sociates is able to supply both the
MMU hardware and the disk operat-
ing system configured for the MMU
and the peripherals of the host
machine.

Operating Systems

Description Version
CP/M for:

Apple Il w/Microsoft BASIC 2.20B
Datapoint 1550/2150 DD/SS 22
Datapoint 1550/2150 DD/DS 2l
Datapoint 1550/2150 DD/SS w/CYN 2.2
Datapoint 1550/2150 DD/DS w/CYN 22
Durango F-85 2:23
Heath H8 w/H17 Disk 1.43
Heath/Zenith H89 DE
ICOM 3812 1.42
ICOM 3712 w/Altair Console 1.42
ICOM 3712 w/IMSAI Console 1.42
ICOM Microfloppy (2411) 1.41
ICOM 4511/Pertec D3000 Hard Disk 2.22
Intel MDS Single Density 22
Intel MDS 800/230 Double Density 202
MITS Altair FD400, 510, 3202 Disk 1.41
MITS Altair FD400, 510, 3202 Disk 2.2
Micropolis Mod I - All Consoles 1.411
Micropolis Mod II - All Consoles 1.411
Micropolis Mod I 2.20B
Micropolis Mod I 2.20B
Compal/Micropolis Mod II 1.4
Exidy Sorcerer/Micropolis Mod I 1.42
Exidy Sorcerer/Micropolis Mod II 1.42
Vector MZ/Micropolis Mod I 1.411
Versatile 3B/Micropolis Mod I 1.411
Versatile 4/Micropolis Mod I 1.411
Horizon North Star SD 1.41
Mostek MDX STD Bus 22
Ohio Scientific C3 2.24
Ohio Scientific C3-B/74 2.24B
Ohio Scientific C3-C'(Prime)/36 2.24B
Obhio Scientific C3-D/10 2.24A
Sol North Star SD 1.41
North Star SD IMSAI SIO Console 1.41
North Star SD MITS SIO Console 1.41
North Star SD 2.23A
North Star DD 1.45
North Star DD/QD 2.23A
Processor Technology Helios II 1.41
by Lifeboat/TRS-8051/4"(Mod 1) 1.41
by Lifeboat/TRS-80 Mod II 2.25A

Hard Disk Modules

Description Version
Corvus Module 2.1
APPLE-Corvus Module 2.1A
KONAN Phoenix Drive 1.8
Micropolis Microdisk 1.92
Pertec D3000/iCOM 4511 1.6
Tarbell Module 1.5
OSI CD-74 for OSI C3-B 1.2
OSI CD-36 for OSI C3-C’ 52
SA-100A for OSIC3-D 1:2

Lifelines, October, 1981 37

distributors, and publishers.

New products and new versions are listed in boldface.

Product S
ACCESS-80 1.0
Accounts Payable/Cybernetics 31
Accounts Payable/MC 1.0
Accounts Payable/Structured Sys 1.3B
Accounts Payable/Peachtree 07-13-80
Accounts Receivable/Cybernetics 30
Accounts Receivable/MC 1.0
Accounts Receivable/Peachtree 07-13-80
Accounts Receivable/Structured Sys 1.4C
Address Mngemt. Sys 1.0
ALDS TRSDOS

ALGOL 60 4.8C
ANALYST 2.0
APL/V80 32
Apartment Management (Cornwall) 1.0
ASM/XITAN 3:1F
Automated Patient History 12
BASIC Compiler 53
BASIC-80 Interpreter 5.21
BASIC Utility Disk 2.0
BOSS Financial Accounting System 1.06
BOSS Demo 1.06
BSTAM Communication System 4.5
BDS C Compiler 1.44
Whitesmiths” C Compiler 2.0
BSTMS 1.2
BUG / uBUG Debuggers 2.03
CBASIC Compiler 2.08
CBS Applications Builder 1:3
CIS COBOL Compiler 4.4,1
CIS COBOL Compact 3.46
FORMS 1 CIS COBOL Form Generator 1.06
FORMS 2 CIS COBOL Form Generator 1.1,6a
Interface for Mits Q70 Printer

COBOL-80 Compiler 4.01
COBOL-80 PLUS M/SORT 4.01
CONDOR 1.10
CREAM (Real Estate Acct'ng) 2.3
Crosstalk 14
DATASTAR Information Manager 1.101
Datebook 2.03
DBASE-II 2.02A
DBASE-II Demo 2.02A
Dental Management System 8.7A
DESPOOL Print Spooler 1.1A
DISILOG Z80 Disassembler 4.0
DISTEL Z80/8080 Disassembler 4.0
EDIT Text Editor 2.06
EDIT-80 Text Editor 2.02
ESQ-1 2.1
FABS 2.4A
FILETRAN 1.20
FILETRAN 1.4
FILETRAN 1.5
Financial Modeling System 2.0
Floating Point FORTH 2
Floating Point FORTH 3
FORTRAN-80 Compiler 3.43
FORTRAN Package 3.40
FPL 56K Vers. 251
FPL 48K Vers. 2.5
General Ledger/Cybernetics 1.3C
General Ledger/MC 1.0
General Ledger/Peachtree 07-13-80
General Ledger/Structured Sys 1.4C
General Ledger 1I/CPaids 1
GLECTOR Accounting System 2.02
GLECTOR IV

HDBS 1.05
IBM/CPM 1.1
Integrated Acctg Sys/Gen'l Ledger

Integrated Acctg Sys/Accts Pyble

Integrated Acctg Sys/Accts Recvble

Integrated Acctg Sys/Payroll

Interchange

Inventory /MicroConsultants 5.3
Inventory/Peachtree 07-13-80

Inventory/Structured Sys 1
Job Cost Control System/MC 1.0
JRT Pascal System 1.4
LETTERIGHT Text Editor i
LEVEL 3 BASIC / G2

LINKER

MAC 2.0A
MACRO-80 Macro Assembler Package 3.43
Magic Wand 1.11
MAGSAM I 4.2
MAGSAM IV 1.0
MAILING ADDRESS Mail List System 07-13-80
Mail-Merge 3.0
Master Tax 1.0-80
Matchmaker

MDBS 1.05
MDBS-DRS 1.02
MDBS-QRS 1.0
MDBS-RTL 1.0
MDBS-PKG

38 Lifelines, October, 1981

VERSION LIST

The listed software is available from the authors, computer stores,

3.40

1.0

53
5.21
2.0

4.5
1.44T

1.2

3.46
1.06
1.16

4.01

4.0

2.02

3.43

3.43

0s

CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
TRSDOS
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M

MR

54K

56K
52K

64K
56K
48K
56K

32K
24K
52K
48K

48K
48K
40K
48K
48K
48K
32K
32K
60K
24K

32K
48K
48K
32K

48K
48K
48K
64K

48K
48K
48K
48K
48K

48K
48K
32K
56K
48K
52K
56K
56K
52K

20K

32K
32K
32K
48K

48K
32K
48K
52K
52K
52K
52K

September 16, 1981

S Standard Version
M Modified Version
(O8] Operating System
P Processor

MR Memory Required

Needs RM/COBOL

For CP/M 2.2

w/It Works run time pkg.
Needs BASIC-80 4.51
Needs RM COBOL
CP/M 2.2

Needs BASIC-80 4.51
w/It Works run time pkg.
Requires 2 drives
TRSDOS Macro-80

Needs CBASIC2,QSORT/VSORT

Needs APL terminal
Needs CBASIC2

W/Vers. 4.51,5.21

Needs 2/-drives w/min 200k each, & 132-col. printer

W/'C’ book
Needs no support language

CP/M 1.41 or 2.XX

CBASIC needed
Needs 80 24 terminal

Needs CBASIC

Zilog mnemonics
Intel mnemonics, TDL extensions

Needs CBASIC2

1-way TR -80 Mod I, TRSDOS to Mod I CP/M
2-way TRS-80 Mod I, TRSDOS & Stnd. CP/M
1-way TR -80 Mod II, TRSDOS to Med II CP/M

Needs RM/COBOL

CPM 2.2 or MPM

Needs BASIC-80 4.51

W/It Works Package

Needs BASIC-80 4.51 |
Use w/ BASIC2,Selector III |
Needs Selector IV

Needed for pkgs below

Needs CP/M 2.2
Needs BASIC-80 4.51
W/It Works Package
Requires CP/M 2.2

Cassettes

Has 1980 tax forms

Wrall above MDBS products

Product

Microspell

Medical Mngemt.System
Microcosm

Mince

Mince Demo

Mini-Warehouse Mngmt. Sys.
Money Maestro

MP/M Operating System
MSORT

Microstat

Mu LISP-80 Compiler

Mu SIMP / Mu MATH Package
NAD Mail List System

Nevada COBOL

Order Entry w/Inventory/Cybernetics
Panel

PAS-3 Medical

PAS-3 Dental

PASM Assembler

Pascal/M

PASCAL/MT Compiler
PASCAL/MT + w/SPP
PASCAL/Z Compiler
Payroll/Cybernetics, Inc.
Payroll/Peachtree
Payroll/Structured Sys

PEARL SD

PLANBSO Financial Package
PL/1-80

PLINK Linking Loader

PLINK-II Linking Loader
PMATE

PRISM/ADS

PRISM/IMS

PRISM/LMS

POSTMASTER Mail List System
Professional Time Acctg
Programmer’s Apprentice
Property Manager

Property Mngemt. Sys.

PSORT

QSORT Sort Program

Real Estate Acquisition Programs
Remote

Residential Prop. Mngemt. Sys.
RM/COBOL Compiler

RAID

RAID w/FPP

RECLAIM Disk Verification Program
SBASIC

Scribble

SELECTOR-III-C2 Data Manager
SELECTOR-IV

Shortax

SID Symbolic Debugger
SMAL/80 Programming System
Spellguard

Standard Tax

STATPAK

STRING BIT FORTRAN Routines
STRING/80 bit FORTRAN Routines
STRING/80 bit Source

SUPER SORT 1 Sort Package
T/MAKER IIData Calculator
T/MAKER II DEMO

TEX Text Formatter
TEXTWRITER-III

TINY C Interpreter

TINY C-II Compiler

TRS-80 Customization Disk
ULTRASORT II

Lifeboat Unlock

VISAM

Visicalc

WordIndex

Wordmaster

Wordstar

Wordstar w/MailMerge
XASM-05

XASM-09

XASM-51

XASM-F8

XASM-400

XASM-18 Cross Assembler
XASM-48 Cross Assembler
XASM-65 Cross Assembler
XASM-68 Cross Assembler
XMACRO-86 Cross Assembler
XYBASIC Interpreter Extended
XYBASIC Interpreter Extended CP/M
XYBASIC Interpreter Extended COMP
XYBASIC Interpreter Extended ROM
XYBASIC Interpreter Integer
XYBASIC Interpreter Integer COMP
XYBASIC Interpreter Integer ROM
280 Development Package
ZDM/ZDMZ Debugger

ZDMZ DeBugger

ZDT Z80 Debugger

ZSID Z80 Debugger

+ These products are available in Z80 or 8080, in the follow-
ing host languages: BASCOM, COBOL-80, FORTRAN-80,
PASCAL/M, PASCAL/Z, CIS-COBOL, CBASIC, PL/I-80,
BASIC-80 4.51, and BASIC-80 5.xx.

S M

3.4 34

4.7.3
4.7.3

3.24 3.24

12 12
1.02 1.02

3.6 3.6

1.41 1.41

VERSION LIST

(OF)

CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
MP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CPM

CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M

CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
Apple
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M
CP/M

P

56K
52K
48K

32K
48K

48K

36K
32K

Needs 15 K
Needs BASIC-80,5.03 or above
CP/M 2.X or MP/M

Needs CBASIC
CP/M.14 or 2.2

Needs BASIC-80, 5.03 or above
muMATH 80

Needs RM/COBOL

also MP/M

Needs 13 -col. printer & CBASIC
Needs 13 -col. printer & CBASIC

Also has 32K version & SuperBrain Ver.

Needs RM/COBOL

Needs BASIC-80 4.51

No longer needs CBASIC
w/CBASIC2,Ultrasort 11

Z80 & 8080 Microproc. Vers. avail.

Needs CBASIC, 2.06 or later & 180K/drive
Needs CBASIC, 2.06 or later & 180K/drive
Needs CBASIC, 2.06 or later & 180K /drive

Needs CBASIC2
needs Basic-80

Needs BASIC-80 4.51
Needs CBASIC

Needs CBASIC

w/Cybernetics CP/M 2

Needs CBASIC

TRSDOS,MDOS too, needs BASIC-80 5.0
N/A-Superbrain

For CP/M 1.x

Needs Word Processing Program

Needs BASIC-80 4.51

Needs BASIC-80 4.2 or above

Max. record =4096 bytes

Use w/BASIC-80 5.2 or above

Needs Wordstar

N/A-Magnolia,Superbr'n,mod.CP/M
For Micropolis,N'Star, Apple, IBM8"
See note above.
N/A-Superbr'n,mod.CP/M
N/A-Superbr'n,mod.CP/M

Lifelines, October, 1981

39

fyou can't find the right program
inournew catalog,
it probably hasn'’t been written.

Take a byte out of our

SOFTWARE WITH FULL SUPPORT Catalog

As the world’s leading publisher of professional software for microcomputers, Lifeboat Associates offers the largest selection of state-of-the-art pro-

grams.

And our new catalog has more to offer than ever. Including:

SYSTEM TOOLS such as:

ZAP80—Powerful menu-driven disk utility for CP/M®-compat-
ible 8080/Z80™ operating systems. Allows direct access to disk
surface; includes extensive file utility-servicing to access and
patch sectors. Permits file comparisons, sector saving, chain-
ing to .COM files, allows word processor-like editing on disk
sectors, and more. $175.

LANGUAGES such as:

STIFF UPPER LISP—Extensive, yet compact, implementation
of Lisp packs over 120 compiled functions into less than 14K.
Includes library of functions written and callable as needed.
Features symbolic debugging aids, an editor, on-line help facil-
ity, print formatter, spelling correction function, and much more.
Includes manual with study guide, program examples, and the
book “LISP” by Winston & Horn. $165.

LANGUAGE AND APPLICATION TOOLS such as:

VISAM—Variable Index Sequential Access Methods allows
programmers working in PL/I-80™ to create application with file
management capabilities rivaling those of main frame systems.
Features variable length keys and records, buffer pool man-
agement with “least referenced” algorithm, automatic space
management and much more. Allows random, sequential (for-
ward and backward), and skip sequential by full or partial key
access. Instructions included forimplementing hierarchical and
relative data access. $250.

WORD PROCESSING SYSTEMS AND AIDS such as:

BENCHMARK—Easy-to-use, menu-driven, word processing
system requiring no special control codes. Just read the func-
tion you want to perform, enter the appropriate function
number, and its done. It's just that simple! $495.

MAILING LIST SYSTEMS such as:

Benchmark Mail List—create customized letters by merging
data from this Mail List into Benchmark word processor-created
text. $395.

DATA MANAGEMENT SYSTEMS such as:
Prism—State-of-the-art family of data base management
tools; available in several versions, all of which include user
manual, sample applications and reports:

Prism/LMS—List Management System creates and maintain:
lists of customers, parts, vendors, employees, subscribers, etc.
Includes unique forms generator; prints user-defined mailing
labels, envelopes, form letters, etc. Can create forms outside
Prism with a text editor. Accesses records by any key, and al-
lows printing of reports in the desired order without sorting.
$250.

Prism/IMS—Information Management System, easy-to-use
by non-technical personnel and more powerful than LMS. Inter-
active multi-keyed files may have up to 99 keys. Includes com-
prehensive Report Management System. Selects record by
fields or calculations (i.e.<,> ,«=,» =,etc.). Features control
breaks for up to 9 levels of subtotals, full calculation capability,
print formatting (footers, headers, etc.), and more. $495.

Prism/ADS—Application Development System designed for
professionals. Includes described features in LMS and IMS
plus complete set of programming aids to reduce time required
to create specialized applications. Creates multi-level menu
structures with no programming; calls user written programs di-
rectly from menus with automatic passing of user data to called
programs. Password protection of critical data. Permits crea-
tion of custom programs with professional capabilities. Com-
plete screen-display, formatting, and data-entry functions sup-
plied. Includes powerful MAGSAM/E multi-keyed file manage-
ment system. $795.

NUMERICAL PROBLEM-SOLVING TOOLS such as:

PLAN80—Powerful tool for improving quality, accuracy, and
timeliness of plans, forecasts, budgets, and analyses. Define
rows and columns, enter data, specify calculations to be per-
formed (“rules”) and the program will process the data and re-
port the results either on CRT or hard copy. Features exclusive
graphing mode to, display results of calculations in form of on-
screen graphs. Recalculates data at your command; useful for
“what-if” forecasting. Powerful, yet easy to use. $295.

PROFESSIONAL AND OFFICE AIDS such as:

CORNWALL APARTMENT MANAGEMENT—Automates
many functions of rental management office. Uses 4 main data
files to capture present and former tenant data, payment his-

tory, and property financial history. Reports include Vacancy
List, Past Due Rents, Lease Expiration, Unsigned Lease,
Apartment Status List, and more. Prints labels, rent increase
notices, late notices, form letters, etc. $165.

Series 9000 Family Dental/Medical Management-Univair—
Utilizes open-item accounting method; maintains full details of
bills until paid or cleared. Keeps record of all family members in
same file for billing to appropriate party. Maintains files for

Patient History, Patient Profile, Insurance Company Codes,
Procedure Codes, Diagnosis Codes, Patient Scheduling, AR,
GL status, etc. Makes data available on inquiry or report basis.
Prints statements, and ADA/AMA insurance forms. Custom
forms available. $950. each

Series 9000 Insurance Agency Management-Univair—
Have the same data processing capabilities available to large
independent agencies! Code up to 999 types of coverage with
full description and standard premium rates charged by each
carrier. Store carriers with appropriate agency commission for
each type of coverage. Maintain agency and producer files with
month, year, and last year-to-date commissions earned. In-
cludes files for Client Master, Policy, Claim History, Coverage
Code, etc. Report in detail, or summary form, for Agency, Pro-
ducer, Insurance Company, Client Master, Policy Register, etc.
Generates statements and reports for direct-billed accounts,
and more! A must for the small to medium insurance agency.
$950

Wiremaster—Tool to aid in design, layout,and construction of
electronic hardware. Designed primarily for wrapped wire con-
struction techniques; also useful for layout, error checking, and
trouble shooting of printed circuit board. Input derived directly
from schematic diagram. Outputs a parts list, error list (i.e.,
wires that go nowhere, etc.), wire list, pin cross reference list,
etc. Invaluable. $150.

DISK OPERATING SYSTEMS
CP/M 2.x configured for the following Ohio Scientific systems:

OHIO SCIENTIFIC C3-B/74 $250.00
OHIO SCIENTIFIC C3-C'/36 $250.00
OHIO SCIENTIFIC D/10 $250.00

SPECIAL 50% OFF CP/M 2.2 configured for Heath H89 by Magnolia. Limited quantities available. Regularly $250.00 Now $125.00

WRITE, TWX, TELEX, OR CALL FOR MORE INFORMATION ABOUT THESE AND ALL OF OUR 200 PROGRAMS, INCLUDING TELECOMMUNI-
CATIONS, GENERAL PURPOSE APPLICATIONS, FINANCIAL ACCOUNTING PACKAGES, BOOKS, PERIODICALS, AND ACCESSORIES.

LIFEBOAT ASSOCIATES’ SOFTWARE IS AVAILABLE FOR OVER 100 POPULAR 8080/Z80 COMPUTER DISK SYSTEMS, INCLUDING:
HEWLETT-PACKARD 125, XEROX 820, AND OSBORNE-1.

LIFEBOAT WORLDWIDE offers you the world’s largest library of software. Contact your nearest dealer or Lifeboat:

Liteboat Associates Liteboat Inc Lifeboat Associates. Ltd

1651 Third Ave OK Bldg . 5F PO Box 125

New York. N Y 10028 1-2-8. Shiba-Daimon London WC2H 9LU. England

Tel (212) 860-0300 Minato-ku. Tokyo 105. Japan Tel 01-836-9028

Telex 640693 (LBSOFT NYK) Tel 03-437-3901 Telex: 893709 (LBSOFTG)

TWX. 710-581-2524 Telex: 2423296 (LBJTYO)

Liteboat Associates GmbH Intersoft GmbH Lifeboat Associates. SARL
Hinterbergstrasse Schlossgartenweg 5 10. Grande Rue Charles de Gaulle
Postfach 251 D-8045Ismaning. W Germany 92600 Asnieres. France

6330 Cham. Switzestand
Tel 042 36 8686
Telex 865265 (MICO CH)

Tel 089-966-44
Telex 5213643 (1SOFD)

&

Lifeboat

World's forem

Tel- 1-733-08-04
Telex 250303 (PUBLIC X PARIS)

sociates -

ware source

or call (212) 860-0300.

,—Mail coupon to: Lifeboat Associates,
1651 Third Avenue, New York, New York 10028

| Please send me a free Lifeboat catalog.

Name Title
Company
I Street
State Zip

Copyright © 1981, by Liteboat Associates

Z80 is a trademark of Zilog, Inc.

CPM is a registerd trademark of Digital Research, Inc.

PL/I-80 is a trademark of Digital Research, Inc.

	lt20248-06-0009

